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Abstract

The Deepwater Horizon (DWH) accident in the northern Gulf of Mexico occurred on April 20, 2010 at a water depth of 1525
meters, and a deep-sea plume was detected within one month. Oil contacted and persisted in parts of the bottom of the
deep-sea in the Gulf of Mexico. As part of the response to the accident, monitoring cruises were deployed in fall 2010 to
measure potential impacts on the two main soft-bottom benthic invertebrate groups: macrofauna and meiofauna.
Sediment was collected using a multicorer so that samples for chemical, physical and biological analyses could be taken
simultaneously and analyzed using multivariate methods. The footprint of the oil spill was identified by creating a new
variable with principal components analysis where the first factor was indicative of the oil spill impacts and this new variable
mapped in a geographic information system to identify the area of the oil spill footprint. The most severe relative reduction
of faunal abundance and diversity extended to 3 km from the wellhead in all directions covering an area about 24 km2.
Moderate impacts were observed up to 17 km towards the southwest and 8.5 km towards the northeast of the wellhead,
covering an area 148 km2. Benthic effects were correlated to total petroleum hydrocarbon, polycyclic aromatic
hydrocarbons and barium concentrations, and distance to the wellhead; but not distance to hydrocarbon seeps. Thus,
benthic effects are more likely due to the oil spill, and not natural hydrocarbon seepage. Recovery rates in the deep sea are
likely to be slow, on the order of decades or longer.
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Introduction

The Deepwater Horizon (DWH) accident in the northern Gulf

of Mexico occurred on April 20, 2010 at a water depth of 1525

meters, in Mississippi Canyon Block 252, releasing an estimated

4.6 million barrels ( = 193 million U.S. gallons, or 731 million

liters) of oil to the Gulf of Mexico through July 15, 2010 [1]. While

oil-budget estimates indicate a majority of the oil had been

removed by cleanup operations and other natural mechanisms [2],

up to 35% of the hydrocarbons were trapped and transported in

persistent deep-sea plumes [3]. Thus, the DWH blowout actually

presents two incidents: the familiar buoyant oil spill with surface

effects of short residence times, and the novel deepwater plume

with chronic subsurface effects that suppress population recovery

of exposed animals [4]. In addition, there were likely mid-water

impacts to plankton and a variety of mid-water species. Oil in the

deepwater plume was transported to deepwater sediments via

multiple pathways, e.g., direct sinking of oil, adsorption of small oil

droplets (alone or mixed with dispersant) onto suspended organic

and inorganic particles in marine snow, incorporation into sinking

copepod fecal pellets in either surface or sub-surface layers,

onshore-offshore transport of oil-laden particles, sinking of heavier

oil by-products resulting from the burning of oil, or settling of oil-

mud complexes resulting from the injection of drilling muds

during top-kill operations [5]. Heavy metals such as barium are

components of drill cuttings, drill fluids, and other containment

fluids commonly used during offshore oil-drilling operations [6,7]

PLOS ONE | www.plosone.org 1 August 2013 | Volume 8 | Issue 8 | e70540



and were likely released and deposited to the bottom during the

blowout event.

Contaminants transported to the seafloor may pose risks to

benthic fauna, particularly those living within or in close

association with bottom substrates and unable to avoid exposure

due to their relatively sedentary existence. Potential ecosystem

service losses are of concern because these fauna serve vital

functional roles in the deep-sea ecosystem including biomass

production, sediment bioturbation and stabilization, organic

matter decomposition and nutrient regeneration, and secondary

production and energy flow to higher trophic levels [8,9]. In many

places, the deep-sea benthos represent important reservoirs of

marine biodiversity [10,11,12,13]. High benthic species diversity

has been reported for the Gulf of Mexico with a maximum on the

mid to upper continental slope at depths between 1200 to 1600

meters [14,15], which coincides with depths of the DWH well site

and potential zone of exposure. The loss of benthic biodiversity is

correlated to an exponential decline in deep-sea ecosystem

functioning [8]. Because deep-sea benthic communities are

diverse, are a critical part of the foodweb base, play a key role

in carbon cycling, affect productivity, are sensitive to perturba-

tions, and are at risk to contaminant exposure, it is important to

determine the effects that the DWH blowout might have had on

these natural resources.

Methods

After the MC252 well was capped on 15 July 2010, an

Implementation Plan for subsurface monitoring was developed by

the Unified Area Command to assess the presence of oil posing a

threat to public health or the environment [5]. The Plan focused

on sampling deep-sea sediments where oil may have migrated and

where gaps in previous sampling efforts existed. Two field missions

were conducted on the R/V Gyre (September 16 through October

19, 2010) and R/V Ocean Veritas (September 24 through October

30, 2010). While 170 stations were sampled, 68 stations located

from 0.5 km to 125 km from the wellhead and at water depths

ranging from 76 m to 2767 m were designated as priority stations

and analyzed for the current study. Stations were located along a

suspected gradient of contaminant effects where 16 of the stations

were arranged in a ‘‘bulls-eye’’ design. This survey design was used

because transects extending in radial patterns from the source of

contamination and the statistical analysis of such designs is well

known [16].

Sediment samples were collected using an OSIL multicorer,

which takes 12 simultaneous cores from a single deployment at

each station. The cores are 10 cm inner diameter and 60 cm in

length. Samples were collected in a multivariate design for each

station. Three cores were set aside for benthic macrofauna, one

core was used for benthic meiofauna, one core was used for

measuring oil and other drilling related contaminants, and one

core was used for basic habitat characteristics (sediment grain size

and sediment water content).

This study was performed in the US Exclusive Economic Zone

(EEZ), and not on any private land. These are not protected lands

or waters. No permission for taking samples was required, nor was

it sought. These studies did not involve any endangered or

protected species.

Macrofaunal samples were processed by extruding cores into

two vertical sections (0–5 cm and 5–10 cm) immediately after

collection. Each section was preserved in the field in 4% buffered

formalin with Rose Bengal, sieved in the laboratory on a 0.3-mm

mesh screen, and transferred to 70% ethanol; and animals from

each of the above samples were counted and identified typically to

the family level or higher.

Meiofaunal samples were collected by immediately subsampling

with a smaller core (5.5 cm inner diameter). The subcores were

Figure 1. Principal components analysis of environmental and biological variables. (A) PC1 and PC2 vector loads for barium (Ba),
polycyclic aromatic hydrocarbons (PAH), total petroleum hydrocarbons (TPH), percent mud content of sediment (Mud), aluminum (Al), nematode to
copepod ratio (N:C), meiofauna abundance (Mei_Abun), macrofauana abundance (Mac_Abun), macrofauna Hill’s N1 diversity index (Mac_N1), and
meiofauna Hill’s N1 diversity index (Mei_N1). (B) PC1 and PC3 vector loads. (C) PC1 station scores, where each station is labeled as distance in km
from the wellhead.
doi:10.1371/journal.pone.0070540.g001

Table 1. Pearson correlation coefficients (and probability
levels) for the principal component station scores and station
locations with respect to depth (m), distance from the
wellhead (km), and distance from seeps (km).

Station
Location Pearson Correlation (probability)

PC 1 PC 2 PC 3

Wellhead 20.487 (0.0001) 20.403 (0.0018) 20.320 (0.0144)

Seep 20.248 (0.0604) 20.188 (0.1568) 20.496 (,0.0001)

Depth 0.0456 (0.7339) 20.435 (0.0006) 20.217 (0.1022)

n = 58.
doi:10.1371/journal.pone.0070540.t001
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extruded into two vertical sections (0–1 cm and 1–3 cm); relaxed

in the field in 7% MgCl2 and preserved in 4% buffered formalin

with Rose Bengal, sieved in the laboratory on a 0.042-mm mesh

screen, and transferred to 70% ethanol; and sorted animals from

each of the above samples were counted and identified to the

lowest possible taxonomic level, which generally was order level or

higher.

Diversity was calculated for macrofauna identified to the family

level and meiofauna identified to higher taxonomic levels ranging

from phylum to order. Using higher taxonomic levels in diversity

studies is twice as rapid and has been shown to yield results similar

to those using species level diversity indices to assess pollution

status around oil and gas platforms in the Gulf of Mexico [17].

Species diversity was calculated by replicate using Hill’s diversity

number one (N1) [18]. It is a measure of the effective number of

species in a sample, and indicates the number of abundant species

[19]. It is calculated as the exponentiated form of the Shannon-

Weiner H9 diversity index, N1 = eH9. As diversity decreases, N1

tends toward 1. Hills’ N1 was used because it is easier to interpret

than most diversity indices.

Chemical contaminant and sediment grain size data collected in

the same multicorer drops as the infauna. Contaminant measure-

ments were made on the top 3 cm of sediment. Data were

downloaded from http://files.noaanrda.org/on 2 April 2012. This

is the same data set reported on in the UAC (2010) report [5]. The

data is also available at http://www.ncddc.noaa.gov/activities/

healthy-oceans/jag/data/and http://www.restorethegulf.gov/

release/2010/12/16/data-analysis-and-findings. Methods for the

chemical analyses are also described in the report and at http://

www.nodc.noaa.gov/deepwaterhorizon/ship.html.

GIS shape files were obtained externally. The bathymetry map

is courtesy of Bill Bryant (TAMU, retired). The seep map portrays

all known acoustic 3D seabed anomalies for the deep Gulf of

Mexico compiled by the Bureau of Ocean Energy Management,

Regulation, and Enforcement (BOEMRE). The seep map was

completed by Bill Shedd and Jesse Hunt (prior to his retirement) in

the Gulf Of Mexico Resource Evaluation section. Over 21,000

geological features are described in the seep map, but many of

them maybe relict, inactive seeps. The seep map was downloaded

on 8 November 2011 from http://www.boemre.gov/offshore/

mapping/SeismicWaterBottomAnomalies.htm downloaded 8 No-

vember 2011, but the linked moved to http://www.boem.gov/

Oil-and-Gas-Energy-Program/Mapping-and-Data/Map-Gallery/

Seismic-Water-Bottom-Anomalies-Map-Gallery.aspx and was

downloaded 14 May 2013.

All biotic and chemical variables (X) were log transformed using

ln (X+1), except the N1 diversity index, which is already a log

transformation. After transformation, all variables were standard-

ized to a normal distribution with a mean of 0 and variance of 1

using the PROC STANDARD module contained in the SAS

Figure 2. PC 1 station scores (Fig. 1) plotted as Jenks natural breaks. Map includes bathymetry in meters and locations of seeps.
doi:10.1371/journal.pone.0070540.g002
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software suite. Raw and transformed data is provided in

supplementary materials (Table S1).

Principal components analyses (PCA) was used to classify the

biological and environmental variables. The PCA is a variable

reduction technique that can be used to reduce a large number of

variables to a reduced set of new variables, which are uncorrelated

and contain most of the variance in the original data set. PCA was

performed using the PROC FACTOR module contained in the

SAS software suite. The FACTOR analysis was run using the

PCA method on the correlation matrix. A multiple linear

regression analysis was also performed using PROC REG using

abiotic variables to explain patterns in biotic variables and to

evaluate the significance and direction of their associations.

The PC1 station scores were plotted in ArcMap 9.3.1 to

illustrate the spatial extent of DWH impacts. Jenks natural breaks

optimization (Goodness of Variance Fit) was chosen to separate

PC1 into five classes, because this model forms classes based on

minimum within-class variance and maximum between class

variance [20]. As such, the model successfully separated PC1 into

five natural classes over the range of PC1 scores where the largest

positive values of PC1 (red and orange circles) represented stations

with highest chemical loads and nematode to copepod (N:C)

Figure 3. PC 1 station scores (Fig. 1) zoomed into the 40 km from the wellhead, and plotted as Jenks natural breaks. Map includes
bathymetry in meters and locations of seeps.
doi:10.1371/journal.pone.0070540.g003

Table 2. Percent change relative to overall mean for benthic community response in zones identified in Figs. 2–3.

Color Zone
Macrofauna
Abundance

Meiofauna
Abundance

Macrofauna
Diversity

Meiofauna
Diversity

Nematode:
Copepod Ratio

Red 1 230.2% 43.2% 253.7% 238.3% 240.1%

Orange 2 17.6% 50.9% 24.5% 219.0% 20.0%

Yellow 3 25.4% 3.9% 14.5% 22.4% 231.3%

Lt Green 4 213.3% 243.7% 6.3% 16.4% 257.5%

Green 5 27.1% 227.3% 11.9% 22.8% 258.4%

doi:10.1371/journal.pone.0070540.t002
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ratios, and lowest diversity indices (N1), all of which indicate

DWH impacts. Conversely, the large negative PC1 scores

represented high diversity and low chemical loads representative

of natural background conditions (yellow/green, and green

circles). Intermediate PC1 scores (yellow circles) were less than

the median and are therefore not considered to be impacted by the

DWH oil spill.

Interpolated maps were constructed in ArcMap Geostatistical

Analyst based on PCA results (Factor 1 scores – unrotated).

Kriging geostatistical techniques were used to interpolate the value

of the random filed to predict the footprint on the map because the

data are spatially autocorrelated. An advantage of the kriging

method is that it incorporates local variation to model the spatial

behavior of an event such as the impacts around the wellhead.

Ordinary kriging incorporates semivariogram analyses that model

the underlying spatial pattern to predict values at unsampled

locations. The Geostatistical Analyst settings used in our analysis

were: Final model = Gaussian function, number of lags = 12, lag

size = 1200, nugget = 0.651, neighbors = 12 with a minimum of 2,

RMSE = 0.9. Interpolated surfaces were converted to vector

polygons to calculate area.

Results

Only the first three extracted orthogonal principal component

(PC) factors had eigenvalues greater than 1 (Fig. 1A). DWH-

derived contaminants were strongly associated with one another

(Fig. 1A) and very highly loaded on PC1 (eigenvalue of 4.0), which

explained 40% of the variability in the dataset. The second

orthogonal variable, PC2 (eigenvalue of 2.3) explained 23% of the

variability, and the third orthogonal variable (eigenvalue 1.2)

explained 12% of the variability. Barium (Ba) is a common

component of drilling muds and fluids and is typically associated

with elevated levels of polycyclic aromatic hydrocarbons (PAH)

and total petroleum hydrocarbons (TPH) around drill sites [7].

The sum PAH definition here is the PAH44 definition used by

NOAA where the sum includes alkylated derivatives of the parent

compounds (C1-, C2-, C3-, and C4-compounds) and some

compounds with sulfur or oxygen substituted for carbons

(thiophenes and furans). Consistent with ecological theory, when

such contaminant concentrations were high, the nematode to

copepod ratio (N:C) tended to be high and values of macrofauna

Hill’s N1 diversity index (Mac_N1) and meiofauna Hill’s N1

diversity index (Mei_N1) tended to be low. PC1 represents the oil

spill footprint.

The orthogonal axis, PC2 (eigenvalue 2.3), explained 23% of

the variability in the data set and was related to positive

associations between percent mud content (Mud) of sediment

(grainsize ,63 mm) and macrofauna abundance (Mac_Abun).

PC2 represents additional benthic community characteristics that

are related to water depth differences and the oil footprint

(Table 1).

Figure 4. Interpolated area of deep sea impact based on PC1 station scores. The interpolated area shown covers 70,166 km2 of which 167
km2 (orange) are considered moderately impacted and 24 km2 (red) are considered severely impacted.
doi:10.1371/journal.pone.0070540.g004
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PC3 was significant (eigenvalue 1.2) and explained an additional

12% of the variance, it defines the natural background with mud

and aluminum (Al) concentrations being correlated and the only

two variables contributing positive loads. In contrast, macrofauna

abundance contributed negative loads to PC3. PC3 represents the

natural background of the deep-sea sediment grain size and Al

content, both of which do not vary greatly in Gulf of Mexico

sediments [7].

Station scores for the new PC1 variable (the oil spill footprint)

were classified into five natural breaks using the Jenks algorithm

and mapped to determine the spatial distribution of the oil spill

related impacts on deep-sea sediments (Fig. 2). These five groups

were color-coded from the highest positive values (red dots) to the

lowest negative values (green dots). The red and orange dots,

which indicated strong and moderate impacts respectively, cluster

mostly near the DWH wellhead. With one exception (a station

60 km to the northwest of the wellhead), the orange dots

(moderate impacts) occur within 3 km of the wellhead in all

directions and at several stations from 5–15 km away from the

wellhead, especially to the southwest. An additional orange dot is

found as far as 37 km to the southwest of the wellhead along the

same isobath. Otherwise, only natural background values are

found at the regional scale.

Benthic community response in the five zones was strongest for

the N:C ratio, which was 240.1% higher in the red zone than the

overall sample mean, and decreased in each successive zone

(Table 2, Figs 2–3). Because of the increase in nematodes, the total

meiofauna abundance was highest in the red and orange zones.

Meiofauna diversity and macrofauna diversity exhibited decreases

in successive zones. Macrofauna abundance was lowest in the red

zone, then increased to the yellow zone, but decrease in the green

and light green zones.

Zooming in, all but two stations within 1 km of the wellhead

have red dots indicating the highest degree of impacts in the

immediate near-field zone (Fig. 3). Generally, there is a gradient in

the groups with distance from the wellhead, indicating very subtle

effects could be detected at very far distances, and the shape of the

footprint is important. While moderate impacts (orange dots)

extend out to about 6 km in various directions from the wellhead,

they also extend along a narrower corridor approximately 37 km

to the southwest. The southwest extension of the DWH footprint is

consistent with the reported direction of the deep-sea plume of

particulate, dissolved, and chemically dispersed oil along an

isobath of about 1400 m. The shallowest station, located 60 km

northwest of the wellhead at a water depth of 76 m, also showed

evidence of a moderate impact. This isolated case is an exception

to the above footprint of impacts within the near-field zone around

the wellhead and farther-field sites to the southwest, but is

consistent with the station’s location along the observed path of

offshore-onshore movement of surface oil slicks that followed the

blowout.

Figure 5. Interpolated area of deep sea impact based on PC1 station scores. The interpolated area of the zoomed in map covers 6,350 km2

of which 148 km2 (orange) are considered moderately impacted and 24 km2 (red) are considered severely impacted.
doi:10.1371/journal.pone.0070540.g005
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The footprint of the oil spill effects was modeled by Kriging the

PC1 station scores (Fig. 4). The modeled area, which is bounded

by the locations of stations, is mostly unaltered (PC1 scores.20.4

that are color coded as green or yellow), except for a small area (19

km2) near where the Mississippi River enters the Gulf of Mexico.

Zooming in, the interpolated pattern of the area of strong

impacts (i.e., PC1 scores ranging from 0.931–2.487) is circular in

shape and covers an area of 24.4 km2 (Fig. 5). The shape of the

interpolated area with moderate impacts (i.e., PC1 scores ranging

from 0.118–0.930) is elongated along the northeast-southwest axis

and covers an area of 148 km2. The shape of the moderate impact

area is asymmetrical, extending further to the southwest (about

17 km from the wellhead) than to the northeast (about 8.5 km

from the wellhead). The 148 km2 area classified as moderate

impacts does not include the shallowest area nearest the location

where the Mississippi River enters the Gulf of Mexico (Fig. 4).

There are many natural seep features in the Gulf of Mexico

(Fig. 2), and several surround the DWH wellhead site (Fig. 3). PC1

is highly correlated with distance from the wellhead, but not with

distance from seeps or water depth (Table 1). PC2, is strongly

correlated with water depth, implying it represents effects due to

water depth. PC2 is also correlated with distance from the

wellhead. PC3, which represents the relationship between

sediment types and macrofauna abundance, is correlated to

distance from natural seeps.

In support of the above PCA approach, a multiple linear

regression (MLR) analysis also was performed to evaluate benthic

impacts using abiotic variables to explain patterns in biotic

variables and the significance and direction of their associations.

Accordingly, the MLR model used macrofauna abundance,

meiofauna abundance, macrofauna diversity, meiofauna diversity,

and N:C as dependent variables and Al, Ba, PAH, TPH, and mud

content as the independent variables. The MLR was run on the

same transformed and standardized data as the PCA so that

outliers would not distort the statistical tests. Results indicate that

the driver of biotic change is PAH concentration. Moreover, the

inverse relationships between PAH concentration and macrofauna

diversity (coefficient estimate =20.52) and meiofauna diversity

(coefficient estimate =20.76) are significant (p = 0.03 and

p = 0.0002 respectively) and the positive relationship between

PAH and N:C is significant (coefficient estimate = 0.83,

p = 0.0002). None of the variance inflation factors (VIF, which is

the reciprocal of tolerance) of the predictor variables were higher

than 4.0, which is well below the common convention of 5 as a

cutoff value. The results of the MLR are consistent with those

derived from the above PCA approach and provide further

confirmatory evidence of spill-related impacts to the soft-bottom

deep benthos.

Discussion

Diversity and community structure are often used as bioindi-

cators of community integrity. Since its proposal [21], the N:C

ratio has been regarded as a useful indicator of organic enrichment

and pollution. While the N:C ratio may vary seasonally due to

natural fluctuations in food availability [22] and sediment

granulometry [23], it has worked well to classify impacts of

pollution and organic enrichment in field and mesocosm studies

[24,25,26]. More recently, and arguably more relevant to the

current study, the N:C has worked well to classify impacts of

drilling activities in the Gulf of Mexico [16]. While natural

seasonal pulses of surfaced-derived primary production could

elevate nematode dominance in deep-sea meiobenthic communi-

ties, it is unlikely that seasonality enhanced N:C in the region of

the MC252 wellhead relative to more distant stations at the same

depth and in the same general region of the Gulf of Mexico.

Sediment granulometry is nearly constant at all stations investi-

gated in the current study with .90% silt/clay, and therefore

granulometry is not likely to have an effect on N:C here. Finally,

prior surveys of the meiofauna community throughout the entire

northern Gulf of Mexico deep sea revealed a Gulf-wide N:C mean

of 5.761.8 across 5 replicate core samples taken from 51 stations

ranging in depth from 200–3500 m [17,27].

Strong positive correlations of N:C, PAH, TPH, and Ba

indicate that contaminants are correlated to benthic community

change in soft-bottom benthos, and this was reflected in positive

scores on the PC1 axis (Fig. 1). The strong inverse correlations

between measures of contaminants and diversity (Mei_N1 and

Mac_N1) on PC1 provide additional evidence of such impacts.

Together these results indicate that PC1 can be used as a new

variable to depict the footprint of oil-spill impacts to the benthos

and loss of ecological integrity. Thus PC1 defines the chemical and

biological footprint of the oil spill.

The hydrocarbon flow rate from the DWH wellhead is

estimated to have been approximately 10.162.06106 kg/day [3]

and as much as 35% of released oil may have entered the observed

deep-sea plume. Model simulations of hydrocarbon trajectories in

the deep-sea indicate a potential for variable flow paths at different

depths [28]. However, direct tracking of the plume and observed

oxygen anomalies in the water column follow an overall trajectory

to the southwest [29,30] at depths of 1100–1200 m, concordant

with predominant deep-water currents at that depth. The deep-sea

oil plume was as much as 200 m thick and 2 km wide in some

locations providing a potential mechanism for transfer of DWH

hydrocarbons to deep-sea communities [29].

Several studies have reported on the observed oxygen anomaly

in the deep-sea plume, and the data suggest hydrocarbon-

mediated enrichment of indigenous bacteria within the water

column [30,31,32]. Similar increases in bacterial abundance and

gene expression have been observed in both deep-sea plume and

coastal marsh investigations [31,33,34]. Bacterial blooms may

have resulted in increased dissolved or particulate organic matter

flux to deep-sea sediments, which could possibly enrich benthic

communities. While there have been several coastal studies of

benthic microbial dynamics [34,35], we are not aware of any

deep-sea sediment microbial studies published to date. In fact, it

has already been pointed out that the initial round of studies of the

DWH incident were lacking in deep-sea studies [4].

Increased N:C ratios at stations inside of 15 km from the

wellhead indicate that meiofauna communities exhibited dispro-

portionately high nematode abundance and dominance in

comparison to more distant stations, which is consistent with an

organic enrichment hypothesis. It is not likely that total organic

carbon (TOC) is the enrichment driver because it does not vary

much among the stations and did not explain variance when

added to the PCA. The increase in nematode abundance relative

to harpacticoid abundance may be the first evidence for a

community-level trophic response to the possibility that the DWH

spill enriched indigenous bacteria, which would then be available

as food for deep-sea infauna. However, the total number of

harpacticoids decreased where nematodes increased, and while we

did not measure sedimentation, it is possible that some infauna was

smothered or covered by spilled oil as well.

It is apparent that the Deepwater Horizon blow out and

subsequent oil spill did adversely affect deep-sea soft-sediment

benthos. How long will community recovery take? Little is known

about deep-sea infaunal community recruitment rates or succes-

sion following a disturbance, especially one with lingering
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contamination of the substrate. In situ experiments indicate that

deep-sea communities are slow to recolonize clean azoic

sediments, taking on the order of years or longer [36]. Full

recovery at impacted stations will require degradation or burial of

DWH-derived contaminants in combination with naturally slow

successional processes. Oil degradation in the marine environment

is limited by temperature, nutrient availability (especially nitrogen

and phosphorous), biodegradability of the petroleum hydrocar-

bons, presence of organic carbon, and the presence of microor-

ganisms with oil degrading enzymes [37,38]. Recovery of soft-

bottom benthos after previous shallow-water oil spills has been

documented to take years to decades [39,40]. In the deep-sea,

temperature is uniformly around 4uC, and TOC and nutrient

concentrations are low, so it is likely that hydrocarbons in

sediments will degrade more slowly than in the water column or at

the surface. Also, metabolic rates of benthos in the deep-sea are

very slow and turnover times are very long [41,42]. Given deep-

sea conditions, it is possible that recovery of deep-sea soft-bottom

habitat and the associated communities in the vicinity of the DWH

blowout will take decades or longer.
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autoinoculation and the microbial ecology of a deep water hydrocarbon

irruption. Proc Natl Acad Sci U S A 109: 20286–20291.

33. Lu Z, Deng Y, Van Nostrand JD, He Z, Voordeckers J, et al. (2012) Microbial

gene functions enriched in the Deepwater Horizon deep-sea oil plume. ISME J

6: 451–460.

34. Beazley MJ, Martinez RJ, Rajan S, Powell J, Piceno YM, et al. (2012) Microbial

Community Analysis of a Coastal Salt Marsh Affected by the Deepwater

Horizon Oil Spill. PLoS ONE 7(7): e41305.

35. Bik HM, Halanych KM, Sharma J, Thomas WK (2012) Dramatic Shifts in

Benthic Microbial Eukaryote Communities following the Deepwater Horizon

Oil Spill. PLoS ONE 7(6): e38550. doi:10.1371/journal.pone.0038550.

36. Grassle JF (1977) Slow recolonisation of deep-sea sediment. Nature 265: 618–

619.

37. Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon

contaminants: An overview. Biotechnol Res Internat 2011: Article ID 941810,

13 pages, doi:10.4061/2011/941810.

38. Beolchini F, Rocchetti L, Regoli F, Dell’Anno A (2010) Bioremediation of

marine sediments contaminated by hydrocarbons: Experimental analysis and

kinetic modeling. J Hazardous Materials 182: 403–407.

39. Boucher G (1985) Long term monitoring of meiofauna densities after the Amoco

Cadiz oil spill. Mar Pollut Bull 16: 328–333.

40. Dauvin JC (1998) The fine sand Abra alba community of the Bay of Morlaix

twenty years after the Amoco Cadiz oil spill. Mar Pollut Bull 36: 669–676.

41. Baguley JG, Montagna PA, Hyde LJ, Rowe GT (2008) Metazoan meiofauna

biomass, grazing, and weight-dependent respiration in the Northern Gulf of

Mexico deep sea. Deep-Sea Res II 55: 2607–2616.

42. Rowe GT, Wei C, Nunnally C, Haedrich R, Montagna P, et al. (2008)

Comparative biomass structure and estimated carbon flow in food webs in the

deep Gulf of Mexico. Deep-Sea Res II 55: 2699–2711.

Deepwater Horizon Deep-Sea Footprint

PLOS ONE | www.plosone.org 8 August 2013 | Volume 8 | Issue 8 | e70540


