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SECRETARY’S FOREWORD 

Energy, Integrity, and the Power of Human Potential 

Over my lifetime, I’ve had the privilege of working as an energy entrepreneur across a range of 

fields—nuclear, geothermal, natural gas, and more—and I now serve as Secretary of Energy under 

President Donald Trump. But above all, I’m a physical scientist who sees modern energy as nothing short 

of miraculous. It powers every aspect of modern life, drives every industry, and has made America an 

energy powerhouse with the ability to fuel global progress. 

The rise of human flourishing over the past two centuries is a story worth celebrating. Yet we are 

told—relentlessly—that the very energy systems that enabled this progress now pose an existential threat. 

Hydrocarbon-based fuels, the argument goes, must be rapidly abandoned or else we risk planetary ruin. 

That view demands scrutiny. That’s why I commissioned this report: to encourage a more thoughtful 

and science-based conversation about climate change and energy. With my technical background, I’ve 

reviewed reports from the Intergovernmental Panel on Climate Change, the U.S. government’s 

assessments, and the academic literature. I’ve also engaged with many climate scientists, including the 

authors of this report. 

What I’ve found is that media coverage often distorts the science. Many people walk away with a 

view of climate change that is exaggerated or incomplete. To provide clarity and balance, I asked a 

diverse team of independent experts to critically review the current state of climate science, with a focus 

on how it relates to the United States. 

I didn’t select these authors because we always agree—far from it. In fact, they may not always agree 

with each other. But I chose them for their rigor, honesty, and willingness to elevate the debate. I exerted 

no control over their conclusions. What you’ll read are their words, drawn from the best available data 

and scientific assessments. 

I’ve reviewed the report carefully, and I believe it faithfully represents the state of climate science 

today. Still, many readers may be surprised by its conclusions—which differ in important ways from the 

mainstream narrative. That’s a sign of how far the public conversation has drifted from the science itself. 

To correct course, we need open, respectful, and informed debate. That’s why I’m inviting public 

comment on this report. Honest scrutiny and scientific transparency should be at the heart of our 

policymaking. 

Climate change is real, and it deserves attention. But it is not the greatest threat facing humanity. That 

distinction belongs to global energy poverty. As someone who values data, I know that improving the 

human condition depends on expanding access to reliable, affordable energy. Climate change is a 

challenge—not a catastrophe. But misguided policies based on fear rather than facts could truly endanger 

human well-being. 

We stand at the threshold of a new era of energy leadership. If we empower innovation rather than 

restrain it, America can lead the world in providing cleaner, more abundant energy—lifting billions out of 

poverty, strengthening our economy, and improving our environment along the way. 
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EXECUTIVE SUMMARY 

 

This report reviews scientific certainties and uncertainties in how anthropogenic carbon dioxide (CO2) 

and other greenhouse gas emissions have affected, or will affect, the Nation’s climate, extreme weather 

events, and selected metrics of societal well-being. Those emissions are increasing the concentration of 

CO2 in the atmosphere through a complex and variable carbon cycle, where some portion of the additional 

CO2 persists in the atmosphere for centuries.   

Elevated concentrations of CO2 directly enhance plant growth, globally contributing to “greening” the 

planet and increasing agricultural productivity [Section 2.1, Chapter 9]. They also make the oceans less 

alkaline (lower the pH). That is possibly detrimental to coral reefs, although the recent rebound of the Great 

Barrier Reef suggests otherwise [Section 2.2].  

Carbon dioxide also acts as a greenhouse gas, exerting a warming influence on climate and weather 

[Section 3.1].  Climate change projections require scenarios of future emissions. There is evidence that 

scenarios widely-used in the impacts literature have overstated observed and likely future emission trends 

[Section 3.1].  

The world’s several dozen global climate models offer little guidance on how much the climate 

responds to elevated CO2, with the average surface warming under a doubling of the CO2 concentration 

ranging from 1.8°C to 5.7°C [Section 4.2]. Data-driven methods yield a lower and narrower range [Section 

4.3]. Global climate models generally run “hot” in their description of the climate of the past few decades 

− too much warming at the surface and too much amplification of warming in the lower- and mid-

troposphere [Sections 5.2-5.4]. The combination of overly sensitive models and implausible extreme 

scenarios for future emissions yields exaggerated projections of future warming. 

Most extreme weather events in the U.S. do not show long-term trends. Claims of increased frequency 

or intensity of hurricanes, tornadoes, floods, and droughts are not supported by U.S. historical data [Sections 

6.1-6.7]. Additionally, forest management practices are often overlooked in assessing changes in wildfire 

activity [Section 6.8]. Global sea level has risen approximately 8 inches since 1900, but there are significant 

regional variations driven primarily by local land subsidence; U.S. tide gauge measurements in aggregate 

show no obvious acceleration in sea level rise beyond the historical average rate [Chapter 7]. 

Attribution of climate change or extreme weather events to human CO2 emissions is challenged by 

natural climate variability, data limitations, and inherent model deficiencies [Chapter 8]. Moreover, solar 

activity's contribution to the late 20th century warming might be underestimated [Section 8.3.1]. 

Both models and experience suggest that CO2-induced warming might be less damaging economically 

than commonly believed, and excessively aggressive mitigation policies could prove more detrimental than 

beneficial [Chapters 9, 10, Section 11.1]. Social Cost of Carbon estimates, which attempt to quantify the 

economic damage of CO2 emissions, are highly sensitive to their underlying assumptions and so provide 

limited independent information [Section 11.2]. 

U.S. policy actions are expected to have undetectably small direct impacts on the global climate and 

any effects will emerge only with long delays [Chapter 12]. 
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PREFACE 

 

This document originated in late March 2025 when Secretary Wright assembled an independent group 

to write a report on issues in climate science relevant for energy policymaking, including evidence and 

perspectives that challenge the mainstream consensus. We agreed to undertake the work on the condition 

that there would be no editorial oversight by the Secretary, the Department of Energy, or any other 

government personnel. This condition has been honored throughout the process and the writing team has 

worked with full independence.  

The group began working in early April with a May 28 deadline to deliver a draft for internal DOE 

review. The short timeline and the technical nature of the material meant that we could not comprehensively 

review all topics. Rather, we chose to focus on topics that are treated by a serious, established academic 

literature; that are relevant to our charge; that are downplayed in, or absent from, recent assessment reports; 

and that are within our competence.  

While the report is intended to be accessible to non-experts, we have omitted some introductory or 

explanatory material that can easily be accessed elsewhere. Nor have we attempted to survey the entire 

literature related to the topics covered. We have focused as much as possible on literature published since 

2020 and referenced previous IPCC and NCA assessment reports. We have also used data through 2024 

where possible. 

The writing team is grateful to Secretary Wright for the opportunity to prepare this report and for his 

support of independent scientific assessment and open scientific debate. We are also grateful to a team of 

anonymous DOE and national lab reviewers whose input helped improve the final report.   

 

 

John Christy, Ph.D. 

Judith Curry, Ph.D. 

Steven Koonin, Ph.D. 

Ross McKitrick, Ph.D. 

Roy Spencer, Ph.D. 
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PART I: DIRECT HUMAN INFLUENCE ON ECOSYSTEMS AND THE 

CLIMATE  
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1 CARBON DIOXIDE AS A POLLUTANT 

 

Chapter summary: 

Carbon dioxide (CO2) differs in many ways from the so-called Criteria Air Pollutants. It does not affect 

local air quality and has no human toxicological implications at ambient levels. It is an issue of concern 

because of its effects on the global climate. 

 

The Clean Air Act of 1970 defined six so-called Criteria Air Contaminants subject to regulation (EPA): 

particulate matter, ground-level ozone, sulfur dioxide, nitrogen dioxide, lead, and carbon monoxide. In 

2007, the Supreme Court ruled that greenhouse gases (CO2 among them) were also “pollutants” subject to 

regulation under Clean Air Act (Mass. v. EPA, 2007). While the definition of “pollutant” is ultimately a 

legal matter, there are important scientific distinctions between CO2 and the Criteria Air Contaminants. The 

latter are subject to regulatory control because they cause local problems depending on concentrations that 

include nuisances (odor, visibility), damage to plants, and, at high enough exposure levels, toxicological 

effects in humans. In contrast, CO2 is odorless, does not affect visibility and has no toxicological effects at 

ambient levels. It is a naturally occurring part of the atmosphere and a key component of human and plant 

respiration. CO2 is essential for plant photosynthesis and higher levels are beneficial for vegetation.  In 

these aspects, CO2 is similar to water vapor.    

Ambient outdoor air today contains about 430 parts per million (ppm) CO2, increasing at about 2 ppm 

per year. The U.S. Occupational Safety and Health Administration issues guidelines for indoor workplaces 

in which elevated CO2 might be encountered, such as where dry ice is used. The Permissible Exposure 

Limit is 5,000 ppm over 8 hours (OSHA, 2024). Allen et al. (2015) reported evidence of diminished 

performance on some cognitive tasks among workers in office cubicles when exposed to CO2 levels above 

1,000-1,500 ppm.  These levels are far larger than any plausible ambient outdoor value through the end of 

the 22nd century. 

The growing amount of CO2 in the atmosphere directly influences the earth system by promoting plant 

growth (global greening), thereby enhancing agricultural yields, and by neutralizing ocean alkalinity.  But 

the primary concern about CO2 is its role as a greenhouse gas (GHG) that alters the earth’s energy balance, 

warming the planet.  How the climate will respond to that influence is a complex question that will occupy 

much of this report.  

 

References  

Allen, J., Macnaughton, P., Satish, U., et al. (2015). Associations of cognitive function scores with carbon 

dioxide, ventilation, and volatile organic compound exposures in office workers: A controlled exposure 
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https://doi.org/10.1289/ehp.1510037 

Massachusetts v. Environmental Protection Agency, 549 U.S. 497 (2007). 

https://www.oyez.org/cases/2006/05-1120  

U.S. Environmental Protection Agency. (n.d.). Criteria air pollutants. https://www.epa.gov/criteria-air-

pollutants 

U.S. Occupational Safety and Health Administration. (2024). OSHA occupational chemical database: 

Carbon dioxide. https://www.osha.gov/chemicaldata/183  
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2 DIRECT IMPACTS OF CO2 ON THE ENVIRONMENT 

 

Chapter summary: 

CO2 enhances photosynthesis and improves plant water use efficiency, thereby promoting plant growth. 

Global greening due in part to increased CO2 levels in the atmosphere is well-established on all 

continents.  

CO2 absorption in sea water makes the oceans less alkaline. The recent decline in pH is within the range 

of natural variability on millennial time scales. Most ocean life evolved when the oceans were mildly 

acidic. Decreasing pH might adversely affect corals, although the Australian Great Barrier Reef has 

shown considerable growth in recent years.  

 

2.1 CO2 as a contributor to global greening 

The growing CO2 concentration in the atmosphere has the important positive effect of promoting plant 

growth by enhancing photosynthesis and improving water use efficiency.  That is evident in the “global 

greening” phenomenon discussed below, as well as in the improving agricultural yields discussed in 

Chapter 10. Here we focus just on CO2 fertilization; research on combined effects due to temperature and 

precipitation changes are discussed in Chapter 10. 

2.1.1 Measurement of global greening 

“Greening” refers to an increase in the fraction of the Earth’s surface covered by plants. It can be 

quantified by the “Leaf Area Index” (LAI) measured by satellite. Many studies over the past decade have 

confirmed a global greening pattern (increase in LAI) attributable in part to rising CO2 levels. Zhu et al. 
(2016) was one of the first studies to report that global greening was detectable using satellite sensors. From 

1982 to 2011 they detected greening over 25-50 percent of the Earth versus “browning” over only four 

percent and attributed 70 percent of the greening to rising CO2 levels (see Figure 2.1). Other contributors 

included land-use changes, warming and nitrogen. The fraction attributable to CO2 was largest in the 

tropics; other factors played more dominant roles in CONUS.  

Zeng et al. (2017) confirmed the pattern of greening, noting that over thirty years it had added 8 percent 

to global leaf area and that greening was mitigating warming. Greening has been observed globally. Chen 

et al. (2019) show that in China and India much of it is driven by land management changes. Thus, while 

China accounts for only 6.6 percent of global vegetated area it accounts for 25 percent of global net increase 

in LAI. Piao et al. (2020) noted that greening was even observable in the Arctic. CO2 fertilization effects 

are influenced by local temperature and nutrient and water availability, all of which vary regionally.  

While plant models predict increased photosynthesis in response to rising CO2, Haverd et al. (2020) 

reported a CO2 fertilization rate much larger than model predictions. That is, CO2 fertilization had driven 

an increase in observed global photosynthesis by 30 percent since 1900, versus 17 percent predicted by 

plant models. If true it would indicate that global models of the socioeconomic impacts of rising CO2 have 

understated the benefits to crops and agriculture. Keenan et al (2023), however, estimated a lower 

fertilization rate more in line with models. The connection between CO2 fertilization and agriculture will 

be discussed in Chapter 9.  
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Figure 2.1: Trends in average Leaf Area Index (LAI). Source: Zhu et al. 2016 Figure 3. 

 

 

Piao et al. (2020) and Chen et al. (2024) report that the greening trend continues with no evidence of 

slowdown, and CO2 fertilization remains the dominant driver 

2.1.2 Photosynthesis and CO2 levels 

Plants build biomass through photosynthesis, a process that converts carbon dioxide, water, and light 

into sugar. The plant enzyme responsible for photosynthesis is Ribulose-1,5-bisphosphate-

carboxylase/oxygenase or “Rubisco”. Photosynthesis is initiated when CO2 is available at the surface of the 

Rubisco enzyme where it is converted to a molecule with 3 carbon atoms and thereafter incorporated into 

plant mass. This is referred to as the “C3” process.  

Rubisco is estimated to have evolved about 3 billion years ago. Over geological time the Earth’s 

atmospheric CO2 levels were usually many times higher than they are today. About 400 million years ago 

CO2 levels were an estimated 2,000-4,000 ppm and were at or above 1,000 ppm for much of the interval 

from 200 to 50 million years ago (Berner 2006, Judd et al. 2024). Over the past 35 million years the level 

of atmospheric CO2 has been steadily declining, falling to as low as 170 ppm during glaciations (Gerhart 

and Ward 2010). While the modern rate of change in CO2 may be high compared to prior intervals, the 

geological evidence is that plants and animals evolved under much higher CO2 levels than at present. 

In response to low-CO2 conditions some plants evolved another photosynthetic pathway called C4, in 

which CO2 is concentrated in the vicinity of Rubisco, allowing for the C3 process to function more 

efficiently. For agricultural purposes the plant categories are: 

• C3: rice, wheat, soybeans and most other crops 

• C4: maize (corn), sugar cane, millet, sorghum 

Had atmospheric CO2 levels continued declining, plant growth would have declined and eventually 

ceased. Below 180 ppm, the growth rates of many C3 species are reduced 40-60 percent relative to 350 

ppm (Gerhart and Ward 2010) and growth has stopped altogether under experimental conditions of 60—

140 ppm CO2. Some C4 plants are still able to grow at levels even as low as 10 ppm, albeit very slowly 

(Gerhart and Ward 2010).  
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Figure 2.2: growth of Abutilon theophrasti after 14 days under identical conditions but for the indicated 
variations in CO2 levels. Source: Gerhart and Ward (2010). Note “Current” corresponds to 1988 in 
image.  

 

Current CO2 levels are about 430 ppm, up from 280 ppm in the early 1800s. The positive response of 

plants to extra CO2 is illustrated in Figure 2.2, reproduced from Gerhart and Ward (2010). It shows the 

growth effect of CO2 on Velvetleaf (Abutilon theophrasti) seedlings over 14 days under controlled 

conditions where only the CO2 exposure is varied. The gains induced by increasing CO2 from 150 ppm to 

350 ppm continue under a further doubling to 700 ppm.  

Over the past 60+ years there have been thousands of studies on the response of plants to rising CO2 

levels. The overwhelming theme is that plants, especially C3 plants, benefit from extra CO2. There are two 

mechanisms by which CO2 confers a growth benefit: 

• Enhanced photosynthesis via the metabolic pathways described above. 

• Increased water use efficiency. This arises because plants draw in CO2 by opening the stomata 

(pores) on the leaf surface. When CO2 is scarce the stomata must be kept wide open for long 

periods, allowing water to evaporate. Under enriched CO2 conditions the stomata remain closed for 

longer periods, thus helping the plant retain water longer, and so increasing water use efficiency. 

Specific effects of climate change on U.S. agriculture will be reviewed in Chapter 9. 
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2.1.3 Rising CO2 and crop water use efficiency 

Derying et al. (2016) surveyed evidence on crop water productivity (CWP), the yield per unit of water 

used, drawing attention to the potential for CO2 both to enhance photosynthesis and to reduce leaf-level 

transpiration (water loss during leaf respiration). They surveyed all available FACE data (Free Air CO2 

Enrichment—see Chapter 9) on crop yield changes for maize (corn), wheat, rice, and soybean and combined 

it with crop model data simulating yield responses as of 2080 under the extreme RCP8.5 emissions scenario 

in four growing regions (Tropics, Arid, Temperate and Cold) each of which were split into rainfed and 

irrigated sub-regions. They reported that models without CO2 fertilization predicted CWP losses in every 

region, but those were more than offset by CO2 fertilization so that all regions showed a net CWP gain. 

Deryng et al. (2016) also reported that negative impacts of warming on wheat and soybean yields were 

fully offset by CWP gains and mitigated by up to 90 percent for rice and 60 percent for maize. 

Similarly, Cheng et al. (2017) noted that increased Gross Primary Production from 1982 to 2011 due 

to rising CO2 uptake was accompanied by such large gains in CWP that global water use by plants had not 

increased, despite the extra biomass. 

Deryng et al. (2016) assumed that climate change would “exacerbate water scarcity”. Yet while models 

do predict that drylands will expand under climate warming, current data show the opposite: greening is 

happening even in arid areas. Zhang et al. (2024) report that due to increased CO2 levels “increasing aridity 

in drylands won’t lead to a general loss of vegetation productivity”; at most only 4 percent of currently arid 

areas will see increased desertification.   

2.1.4 CO2 fertilization benefits in IPCC Reports 

The IPCC has only minimally discussed global greening and CO2 fertilization of agricultural crops. 

The topic is briefly acknowledged in a few places in the body of the IPCC 6th and earlier Assessment 

Reports but is omitted in all Summary documents. Section 2.3.4.3.3 of the AR6 Working Group I report, 

entitled “global greening and browning,” points out that the IPCC Special Report on Climate Change and 

Land had concluded with high confidence that greening had increased globally over the past 2-3 decades. 

It then discusses that there are variations in the greening trend among data sets, concluding that while they 

have high confidence greening has occurred, they have low confidence in the magnitude of the trend. There 

are also brief mentions of CO2 fertilization effects and improvements in water use efficiency in a few other 

chapters in the AR6 Working Groups I and II Reports.  

Overall, however, the Policymaker Summaries, Technical Summaries, and Synthesis Reports of AR5 

and AR6 do not discuss the topic. 

 

2.2 The Alkaline Oceans 

2.2.1 Changing pH 

A neutral aqueous solution has a pH of 7.0, while one with pH greater than 7.0 is alkaline (also termed 

basic) and with pH less than 7.0 is acidic. The modern-day global average pH of surface sea water is 

estimated to be 8.04 (Copernicus Marine Service 2025, Figure 2.3), down from an estimated value of 8.2 

in pre-Industrial times (Gattuso and Hansson, 2011). As CO2 concentrations in the atmosphere increased, 

the oceans absorbed more, which decreases their pH. Depending upon the oceans’ buffering capacity, they 

are expected to become somewhat less alkaline over time, consistent with the observed decrease in pH. 
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Figure 2.3: Ocean pH 1985 – 2022. Source: Copernicus Marine Service 2025 

 

While this process is often called “ocean acidification”, that is a misnomer because the oceans are not 

expected to become acidic; “ocean neutralization” would be more accurate. Even if the water were to turn 

acidic, it is believed that life in the oceans evolved when the oceans were mildly acidic with pH 6.5 to 7.0 

(Krissansen-Totton et al., 2018). On the time scale of thousands of years, boron isotope proxy 

measurements show that ocean pH was around 7.4 or 7.5 during the last glaciation (up to about 20,000 

years ago) increasing to present-day values as the world warmed during deglaciation (Rae et al., 2018). 

Thus, ocean biota appear to be resilient to natural long-term changes in ocean pH since marine organisms 

were exposed to wide ranges in pH. 

2.2.2 Coral reef changes 

There are concerns that a decreasing pH of sea water will reduce the calcification rate of coral reefs. 

But coral reefs already endure large swings in pH, partly due to daily photosynthetic activity in the reef; 

measured pH values range from 9.4 during the day to 7.5 at night (Revelle and Fairbridge, 1957). De’ath et 
al. (2009) reported that a portion of Australia’s Great Barrier Reef (GBR, the world’s largest coral reef 

ecosystem) had experienced a 14 percent decline in calcification since 1990.  This was tentatively attributed 

to increasing water temperature and decreasing pH. But Ridd et al. (2013) showed that report to have 

resulted from a biased data analysis that, when corrected, showed no change in calcification rates. 

Nevertheless, the alarm produced by the original paper has persisted as evidenced by the large number of 

published citations (541) to the original study compared to only 11 citations to the correction (as of 30 April 

2025). 

The most recent annual summary of GBR conditions from the Australian Institute of Marine Science 

indicates that coral production has rebounded strongly (AIMS, 2023). Figure 2.4 shows the results of the 

AIMS surveys of hard coral cover, expressed as a percentage of the reef area. Much of the decline in the 

GBR before 2011 turned out to be due to intense tropical cyclone activity (Beeden et al., 2015) as well as 

a string of marine heatwaves, agricultural runoff and invasive species (Woods Hole, 2023). Given the 

reported declines in GBR calcification between 1990 and 2009 and the continued increase in atmospheric 

CO2 levels, the rebound has surprised some observers.   
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Figure 2.4 Hard coral cover of three regions of the Great Barrier Reef 1985 to 2023. Source: AIMS 
2023.  

 

It is being increasingly recognized that publication bias (alarming ocean acidification results preferred 

by high-impact research publications) exaggerates the reported impacts of declining ocean pH. An ICES 

Journal of Marine Science Special Issue addressed this problem with an article entitled, Towards a Broader 

Perspective on Ocean Acidification Research. In the Introduction to that Special Issue, H. I. Browman 

stated, “As is true across all of science, studies that report no effect of ocean acidification are typically more 

difficult to publish.” (Browman, 2016).  

Similarly, a meta-analysis (Clements et al., 2021) of the negative effects of ocean acidification on reef 

fish behavior found what they called a “decline effect”: initially dramatic conclusions published in 

prominent journals showing apparently large impacts of acidification tended to be followed up by 

subsequent studies on larger sample sizes yielding much smaller and typically non-existent effects.  They 

call for their colleagues to improve research practices to counter the “decline effect”: 

 

[The] vast majority of studies with large effect sizes in this field tend to be characterized by low 

sample sizes, yet are published in high-impact journals and have a disproportionate influence on 

the field in terms of citations. We contend that ocean acidification has a negligible direct impact on 

fish behavior, and we advocate for improved approaches to minimize the potential for a decline 

effect in future avenues of research (Clements et al., 2021).  

 

In summary, ocean life is complex and much of it evolved when the oceans were acidic relative to the 

present. The ancestors of modern coral first appeared about 245 million years ago. CO2 levels for more than 

200 million years afterward were many times higher than they are today. Much of the public discussion of 

the effects of ocean “acidification” on marine biota has been one-sided and exaggerated.  
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3 HUMAN INFLUENCES ON THE CLIMATE  

 

Chapter Summary: 

The global climate is naturally variable on all time scales. Anthropogenic CO2 emissions add to that 

variability by changing the total radiative energy balance in the atmosphere. 

The IPCC has downplayed the role of the sun in climate change but there are plausible solar irradiance 

reconstructions that imply it contributed to recent warming.  

Climate projections are based on IPCC emission scenarios that have tended to exceed observed trends. 

Most academic climate impact studies in recent years are based upon the extreme RCP 8.5 scenario that 

is now considered implausible; its use as a business-as-usual scenario has been misleading.  

Carbon cycle models connect annual emissions to growth in the atmospheric CO2 stock. While models 

disagree over the rate of land and ocean CO2 uptake, all agree that it has been increasing since 1959. 

There is evidence that urbanization biases in the land warming record have not been completely 

removed from climate data sets. 

 

 

3.1 Components of radiative forcing and their history  

3.1.1 Historical radiative forcing 

A changing climate has been the norm throughout the Earth’s 4.6-billion-year history. The Earth’s 

temperature and weather patterns change naturally over timescales ranging from decades to millions of 

years. Natural variations in the surface climate originate in two ways. Internal climate fluctuations 

associated with circulations in the atmosphere and ocean exchange energy, water, and carbon between the 

atmosphere, oceans, land, and ice. External influences on the climate system include variations in the energy 

received from the sun and the effects of volcanic eruptions. Human activities influence climate through 

changing land use and land cover. Humans are also changing the composition of the atmosphere by 

emissions of CO2 and other greenhouse gases and by altering the concentration of aerosol particles in the 

atmosphere. 

The earth is warmed by the sunlight it absorbs and is cooled by the heat it radiates to space.  Averaged 

over the Earth’s surface, each of these processes involve power flows of about 240 Watts per square meter 

(W/m2).  When they are in balance, there are no net external causes of warming or cooling.  Both human 

and natural influences on the climate alter this balance and so cause the climate to change. 

Influences on the Earth’s energy balance at the top of the atmosphere are quantified by “radiative 

forcing”, the extent to which they disturb the warming/cooling balance; a positive forcing warms while a 

negative forcing cools. The IPCC’s estimated history of major components of radiative forcing since 1750 

is shown in the following two figures from its AR6. 
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Figure 3.1.1: IPCC estimates of radiative forcing components over time. Shading indicates 

uncertainty ranges. Source: AR6 WGI Ch2 Fig. 10 

 

 

 
Figure 3.1.2 IPCC estimates of radiative forcing component changes from 1750 to 2019. Source: 

AR6 WGI Ch 7 Fig. 7-6.  

 

These graphs show that the total radiative forcing is comprised of both natural and anthropogenic 

components. Carbon dioxide is the largest human influence on the climate and the one most relevant to the 

influence of fossil fuel use. It exerts a warming influence by decreasing the cooling power of the 

atmosphere. Emissions of CO2 are accumulating in the atmosphere, as described in the following section, 

so that the warming influence is growing. Other greenhouse gases (methane, nitrous oxide, halogens, and 

ozone) act similarly, currently adding another 75 percent to CO2’s warming. Aerosols exert an overall 

cooling effect, although with large uncertainties in the way they catalyze the formation of reflective clouds. 

As a result, understanding the causes of recent warming requires not just identifying the warming effects 

of CO2, but also the more uncertain cooling effects of aerosols. 

The IPCC assesses the change in the radiative forcing by the sun to be negligible, based on their 

preference for data reconstructions that imply minimal solar change since preindustrial times. But Connolly 

et al. (2021) reviewed sixteen different Total Solar Irradiance (TSI) reconstructions in the literature 
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covering the years 1600-2000; the reconstructions vary from almost no change in TSI to a relatively large 

upward trend. Those authors note that the variation in TSI reconstructions combined with variations in 

surface temperature reconstructions allows for inferences consistent with either no or most 20th century 

warming being attributable to the sun.   

A particularly thorny issue is the gap in TSI data between 1989 and 1991 due to a delay in the launch 

of a monitor following the Space Shuttle Challenger disaster on January 28 1986.  This delay prevented a 

replacement satellite from being launched in time to overlap with, and its readings to be intercalibrated 

with, the prior system (Zacharias 2014, Scafetta et al. 2019). This is called the ACRIM (Active Cavity 

Radiometer Irradiance Monitor) gap problem. The question of whether there is an upward trend in TSI over 

1978 to 2018 hangs on how the ACRIM data gap is filled.  Connolly et al. (2021) found that the IPCC’s 

consensus statements on solar forcing were formulated prematurely through the suppression of dissenting 

scientific opinions. 

Another natural radiative forcing component is volcanic aerosols, which exert an episodic cooling 

influence.  Box 4.1 in the IPCC AR6 Report addresses the climate impact of volcanic eruptions, noting 

three explosive volcanic eruptions that occurred in the first half of the 19th century.  This included the 1815 

Tambora eruption that resulted in the ‘year without summer’, with multiple harvest failures across the 

Northern Hemisphere. There is uncertainty about the sign of the relatively small forcing due to the 

submarine volcano Hunga Tonga which erupted in 2022 (Jenkins et al. 2023, Schoeberl et al. 2024).  

Figure 3.1.1 shows that the anthropogenic forcing component was negligible before about 1900 and 

has increased steadily since, rising to almost 3 W/m2 today.  However, this is still only about 1 percent of 

the unperturbed radiation flows, making it a challenge to isolate the effects of anthropogenic forcing; state-

of-the-art satellite estimates of global radiative energy flows are only accurate to a few W/m2.  

Natural sources of global energy imbalance other than volcanoes and total solar irradiance (TSI) are 

not included in these graphs because they remain largely unknown. 

3.1.2 Change in atmospheric CO2 since 1958 

Carbon dioxide’s warming influence depends on how much “extra” CO2 accumulates in the 

atmosphere- i.e., its concentration above the preindustrial value of 280 ppm.  The CO2 level as recorded at 

the Mauna Loa observatory in Hawaii, generally used as the representative global average concentration, 

is available online at https://gml.noaa.gov/ccgg/trends/index.html. The concentration was about 316 ppm 

at the start of the record in 1959 and is now about 430 ppm, a 36 percent increase. At the end of the last 

glaciation CO2 levels had fallen to about 180 ppm. As discussed in Chapter 2, C3 plants begin dying at CO2 

levels below about 140 ppm and C4 plants at levels below 100 ppm, so if CO2 levels had continued falling 

plant life would have been imperiled.  

 

 

https://gml.noaa.gov/ccgg/trends/index.html
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Fig. 3.1.3. Yearly average atmospheric CO2 concentrations (1959-2025) in ppm measured at 
Mauna Loa (blue). C3 Threshold: Level below which C3 plants begin dying (140 ppm, see 
Chapter 2). C4 Threshold: Level below which C4 plants begin dying (100 ppm, see Chapter 2). 
Glacial minimum: Minimum level during recent glaciations (purple arrow). CO2 data source: 
https://gml.noaa.gov/ccgg/trends/index.html  

 

 

The annual increase in concentration is only about half of the CO2 emitted because land and ocean 

processes currently absorb “excess” CO2 at a rate approximately 50 percent of the human emissions. Future 

concentrations, and hence future human influences on the climate, therefore depend upon two components: 

(1) future rates of global human CO2 emissions, and (2) how fast the land and ocean remove extra CO2 from 

the atmosphere. We discuss each of these in turn. 

 

3.2 Future emission scenarios and the carbon cycle 

3.2.1 Emission scenarios 

Assessing the dangers of future GHG emissions requires assumptions about what those emissions will 

be. Future emissions, and hence human influences on the climate, will depend upon future demographics, 

economic activity, regulation, and energy and agricultural technologies. Various assumptions about each 

of those lead to projections of greenhouse gas emissions and concentrations, aerosol concentrations, and 

changes in land use, which ultimately can be combined into assumptions about anthropogenic radiative 

forcing.  

The great uncertainties about these many factors make it impossible to precisely predict future 

emissions. Instead, the IPCC has used various sets of scenarios meant to span a plausible range of 

possibilities for population, economy, and technologies.  Recent versions of the scenarios are labeled by a 

number indicating the anthropogenic radiative forcing expected in 2100 under that scenario.  Thus, a 

scenario labeled with a “6” corresponds to 6 W/m2 of human-induced radiative forcing (warming) at the 

end of the century. (Recall current anthropogenic radiative forcing is about 2.7 W/m2.)   

https://gml.noaa.gov/ccgg/trends/index.html
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Although the IPCC does not claim its emission scenarios are forecasts, they are often treated as such. 

Comparisons of past scenario groups against observations show that IPCC emission projections have tended 

to overstate actual subsequent emissions. For the IPCC Third and Fourth Assessment Reports a set of 

emission projections from the Special Report on Emission Scenarios was used; these were referred to as 

the SRES scenarios. McKitrick et al. (2012) showed that, when converted to per capita values, the SRES 

scenario emissions distribution was skewed upwards compared with observed trends. The bias of the SRES 

scenarios was confirmed by the later analysis of Hausfather et al. (2019) who showed that observed 

atmospheric CO2 concentrations tracked the low end of the SRES range and also of subsequent IPCC 

scenario ranges (Figure 3.2.1).  

For AR5 the IPCC developed a new set of scenarios called the Representative Concentration Pathways 

(RCPs). These were identified by a number representing the increase in forcing and were thus called 

RCP2.6, RCP4.5, RCP6.0 and RCP8.5. RCP2.6 (implying an anthropogenic radiative forcing in 2100 of 

2.6 W/m2) describes a GHG concentration pathway leading to warming well below 2°C. At the other end 

of the scale RCP8.5 is an extreme outcome implying nearly 5°C warming from 1900 to 2100.  

RCP8.5 came to be referred to as the no-policy baseline, or “business-as-usual” scenario in both the 

academic literature and popular media. It was therefore used to generate the reference outcome supposedly 

representing the 21st century world in the absence of increasingly stringent emission reduction policies. But 

RCP8.5 was intended as a low-probability high emissions scenario and its use as a business-as-usual 

baseline has been criticized as grossly misleading.1 Hausfather and Peters (2020a) writing in a commentary 

in Nature, pointed out that RCP8.5 was developed as an extreme worst-case, and its misuse as a “business 

as usual” baseline has resulted in a large number of misleading studies and media reporting.  

The implausibility of the RCP8.5 scenario was examined by Burgess et al. (2021). The implausibility 

of RCP8.5 should not be interpreted as very unlikely (e.g. 95th percentile) or a “worst case”, but rather as 

genuinely implausible owing to the implausibility of the inputs required to reach a forcing of 8.5 W/m2. 

They noted that RCP8.5 has already diverged from observed trends in energy use and the near future trends 

diverge sharply from those of the International Energy Agency (IEA), which provides market-based 

projections of energy use for the coming decades. Pielke Jr. et al. (2022) further showed that the historic 

and projected IEA trends run near the bottom of the envelopes of both RCP projections and the more recent 

Shared Socioeconomic Pathway (SSP) scenario trends. 

Schwalm et al. (2020) defended the use of RCP8.5 on the grounds that cumulative CO2 emissions over 

2005-2020 track it more closely than the lower RCP scenarios. They also argue that a modified version of 

the IEA scenarios closely track RCP8.5 in the coming decades. Hausfather and Peters (2020b) responded 

that the skill of RCP8.5 over those 15 years is due to offsetting errors in its representation of CO2 from fuel 

use and land use change, and the apparent agreement with IEA in coming decades is due to Schwalm et al. 

adding in very high land use emissions. The IEA’s own projected CO2 emissions track well below RCP8.5.  

Widespread use of RCP8.5 as a no-policy baseline has created a bias towards alarm in the climate 

impacts literature. The extent of this problem was confirmed in a literature analysis by Pielke Jr. and Ritchie 

(2020). They found that some 16,800 scientific papers published between 2010 and 2020 used the RCP8.5 

scenario, with about 4,500 of the articles linking RCP8.5 to the concept of “business-as-usual”. Their 

analysis showed how RCP8.5 was misused not only by individual researchers, but also by influential 

science agencies like the IPCC and the U.S. National Climate Assessment (USNCA), which has directly 

led to misleading coverage in prominent media outlets.  

 

1 This extreme scenario is useful for modelers, since a large forcing generates a large response (warming) making 

it easier to assess a model’s sensitivity.  But that’s very different than claiming it is a plausible future outcome. 
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Figure 3.2.1 Since the 1970s successive families of emission and concentration projections (colored 
lines) have consistently overestimated observations (black line). Source: Hausfather et al. (2019) 
Figure S4.  

 

 

Pielke and Ritchie (2020) reported new studies using RCP8.5 were published at a rate of about 20 per 

day, with about two per day specifically linking RCP8.5 and “business as usual.” They conclude that the 

climate research community has spent a decade “committing scientific resources to science fiction” and 

that “The scientific literature has become imbalanced in an apocalyptic direction.”  

The IPCC developed a new set of scenarios for AR6, the “Shared Socioeconomic Pathway” (SSP) 

scenarios, which have continued the bias shown in the RCP and SRES scenarios. Figure 3.2.2 shows total 

global observed CO2 emissions compiled by the International Energy Agency (IEA) merged with the 

emission projection from the EIA taking account of energy use projections and current policies. The other 

lines show the range of IPCC SSP scenarios (SSP1-SSP5). As of 2023, global CO2 emissions have been 

tracking well below SSP7.0 and are even below SSP2-4.5.  
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Figure 3.2.2. Observed and projected CO2 emissions. Source: IPCC (SSP scenarios) and 
Energy Information Administration (EIA). Green: observed historical emissions and EIA 
projections. Other lines: SSP1-5. Data source: Friedlingstein et al. (2024). 

 

3.2.2 The carbon cycle relating emissions and concentrations 

Carbon dioxide emissions from fossil fuel burning (and to a lesser extent deforestation and cement 

production) have led to steadily increasing CO2 concentrations in the atmosphere, as shown in Fig. 3.1.3. 

The relation between emissions and concentration is determined by the global carbon cycle of land and 

ocean processes that exchange carbon with the atmosphere. Our understanding of these processes was 

reviewed by Crisp et al. (2021).  

There are about 850 Gt of carbon (GtC) in the Earth’s atmosphere2, almost all of it in the form of CO2.  

Each year, biological processes (plant growth and decay) and physical processes (ocean absorption and 

outgassing) exchange about 200 GtC of that carbon with the Earth’s surface (roughly 80 GtC with the land 

and 120 GtC with the oceans). Before human activities became significant, removals from the atmosphere 

were roughly in balance with additions. But burning fossil fuels (coal, oil, and gas) removes carbon from 

the ground and adds it to the annual exchange with the atmosphere. That addition (together with a much 

 

2 Because CO2 is chemically transformed through the course of the carbon cycle, it is more convenient to track 

atoms of carbon rather than molecules of CO2.  One gigatonne of carbon (GtC) is equivalent to about 3.7 Gt of CO2. 
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smaller contribution from cement manufacturing) amounted to 10.3 GtC in 2023, or only about 5 percent 

of the annual exchange with the atmosphere.   

The carbon cycle accommodates about 50 percent of humanity’s small annual injection of carbon into 

the air by naturally sequestering it through plant growth and oceanic uptake, while the remainder 

accumulates in the atmosphere (Ciais et al., 2013). For that reason, the annual increase in atmospheric CO2 

concentration averages only about half of that naively expected from human emissions.   

To project future CO2 concentrations in the atmosphere, and hence future human influences on the 

climate, it is important to know how the carbon cycle might change in the future.  The historical near 

constancy of that 50 percent fraction means that the more CO2 humanity has produced, the faster nature 

removed it from the atmosphere. That 50 percent fraction changes somewhat from year to year due to 

natural carbon cycle imbalances from El Nino, La Nina, and varying weather patterns. There was also a 

substantial additional reduction in atmospheric CO2 after the 1991 eruption of Mt. Pinatubo, a curious result 

that has yet to be explained (Angert et al., 2004).  

The main processes that remove excess CO2 from the atmosphere are increased growth of land 

vegetation (especially at high latitudes), some increase in the sequestering of carbon in soils, and uptake of 

CO2 by the ocean due to the increasing partial pressure of atmospheric CO2  over that of CO2 dissolved in 

the ocean. All twenty land carbon cycle models tracked by the Global Carbon Project (Friedlingstein et al., 

2024) show land processes have been removing excess CO2 at an increasing rate since 1959. This is 

consistent with a “global greening” phenomenon (Chapter 2.1) observed by satellites since monitoring of 

global greenness began in 1982.  

While land vegetation has been responding positively to more atmospheric CO2, uptake of extra CO2 

by ocean biological processes remains too uncertain to be measured reliably. Our current understanding of 

these and many more carbon cycle processes was reviewed by Crisp et al. (2021). 

 

CO2 uptake by land processes 

The uptake of extra CO2 from the atmosphere by land surface processes (as also inferred from global 

greening) has been modeled with 20 different dynamic global vegetation models, the outputs of which are 

updated every year by the Global Carbon Project (Friedlingstein, 2024). As seen in Fig. 3.2.3, all of those 

models agree that vegetation and soils have been sequestering carbon from the atmosphere. But we also see 

that the long-term trends over 1959 to 2023 (65 years) vary widely between models, by nearly a factor of 

7. This demonstrates that there remains considerable uncertainty in how fast land processes are removing 

CO2  from the atmosphere, which in turn creates uncertainty in future atmospheric CO2 concentrations, 

which then produce uncertainty in climate model simulations of future climate change.  
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Figure 3.2.3 Trends of annual CO2 uptake (GtCO2 per year per decade) by land processes 
during 1959-2023 simulated by 20 different dynamic global vegetation models periodically 
reported by the Global Carbon Project (Friedlingstein, 2024). 

 

CO2 uptake by ocean processes 

The uptake of extra CO2  from the atmosphere by ocean processes has been modeled with 10 different 

ocean biogeochemistry models, the outputs of which are updated every year by the Global Carbon Project 

(Friedlingstein, 2024). Like the results from the land models, all of the ocean models agree that the global 

oceans have been sequestering carbon from the atmosphere at an increasing rate during 1959-2023 (Fig. 

3.2.4). Unlike the land models, however, the ocean models show much better agreement with each other, 

with the model producing the fastest increasing CO2  uptake being only 65 percent faster than the model 

with the most slowly increasing CO2 uptake. In spite of the relative agreement among models, Friedlingstein 

et al. (2022) notes that there is substantial discrepancy between the different methods on the strength of the 

ocean sink over the last decade, particularly in the Southern Ocean.  

Note that the average trend in CO2  uptake across all land models in Fig. 3.2.3 is 25 percent larger than 

the average trend in ocean uptake. This suggests land processes are increasing in their ability to remove 

CO2 faster than ocean processes are increasing their CO2 sequestration.  
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Figure 3.2.4 Trends of annual CO2 uptake (GtCO2 per year per decade) by ocean processes during 
1959-2023 simulated by 10 different ocean biogeochemistry models periodically reported by the 
Global Carbon Project (Friedlingstein, 2024). 

 

3.3 Urbanization influence on temperature trends 

Historical temperature data over land has been collected mainly where people live. This raises the 

problem of how to filter out non-climatic warming signals due to Urban Heat Islands (UHI) and other 

changes to the land surface. If these are not removed the data might over-attribute observed warming to 

greenhouse gases. The IPCC acknowledges that raw temperature data are contaminated with UHI effects 

but claims to have data cleaning procedures that remove them. It is an open question whether those 

procedures are sufficient.  

AR6 downplayed this issue by saying (WGI p. 235) that no recent evidence had emerged to alter the 

AR5 finding that urbanization causes an upward bias of no more than 10 percent in the global land surface 

warming trend. AR5 (WGI p. 189) also cited the 10 percent upper bound without citing a source. AR4 

(WGI p. 244) cited Jones et al. (1990) and Peterson et al. (1999) as the basis of the claim. Peterson et al. 

had failed to find any difference in trends between rural and urban samples, although their definition of 

rural included local populations up to 10,000 persons while the relative influence of urbanization begins 

well below that (Spencer et al., 2025). Jones et al. compared rural/urban warming in three regions: Eastern 

Australia, Eastern China and Western Soviet Union. Their definition of ‘‘rural’’ included towns of up to 
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10,000 in the former Soviet Union and up to 100,000 in China. They found relative warming biases greater 

than 10 percent in these areas but conjectured that the urbanization effect averaged over the areas they did 

not examine would bring the global land bias to under 10 percent of the observed warming trend.  

Several papers appeared in print prior to the IPCC AR4 that argued that the warming effect of UHIs 

added a relatively large (30-50%) component to observed warming and was not simulated by climate 

models (de Laat and Maurellis 2006, McKitrick and Michaels 2007). These findings were based on 

correlations between locations of maximum warming over land with locations of maximum socioeconomic 

development. AR4 asserted (p. 244) that these correlations were an artefact of natural atmospheric 

circulations and were in fact statistically insignificant, and on that basis set the findings aside. Their claim 

was controversial because it was presented with no supporting evidence. McKitrick (2010) and McKitrick 

and Nierenberg (2010) showed that taking into account various conjectured alternative explanations for the 

correlations did not affect their significance. AR5 (p. 189) conceded that AR4 had provided “no explicit 

evidence” for its assessment and further acknowledged, based on these papers, that there was “significant 

evidence for such contamination of the record” i.e. a warming bias in the land record. However as already 

noted, elsewhere in the AR5 report they carried forward AR4 claim that it was less than 10 percent of 

observed warming. Further they provided no caution about using the land record for climate measurement 

despite conceding the evidence for UHI contamination. Recently Soon et al. (2023) estimated an 

urbanization bias in the Northern Hemisphere land record over 1850-2018 sufficient to increase the trend 

in the blended record from 0.55°C to 0.89°C per century.  

Some studies providing evidence against UHI contamination compared warming rates between rural 

and urban locations (Jones et al. 1990, Peterson et al. 1999, Wickham et al. 2013). It is not known whether 

such methods would be capable of detecting UHI bias even when present. The influence of UHI warming 

is logarithmic in population, in other words it is strongest at low population density then levels off as local 

urbanization expands (Oke 1973, Spencer et al. 2025). Hence failure to find a difference in warming rates 

between urban and rural stations does not prove the absence of UHI contamination. McKitrick (2013) 

provided an empirical demonstration in which the rural/urban trends were not significantly different in a 

data set shown on other grounds to be contaminated with UHI bias.  

Parker (2006) examined a sample of urban locations and found no difference in trends between subsets 

partitioned according to nighttime wind speed, concluding on this basis that urbanization could not be a 

significant factor. Here again the question is whether such a method would find UHI bias even if present. 

McKitrick (2013) presented an example in which UHI-contaminated data did not exhibit significant trend 

differences when stratified according to wind speed. 

The challenge in measuring UHI bias is relating local temperature change to a corresponding change 

in population or urbanization, rather than to a static classification variable such as rural or urban. Spencer 

et al. (2025) used newly available historical population archives to undertake such an analysis and found 

evidence of significant UHI bias in U.S. summertime temperature data.  

In summary, while there is clearly warming in the land record, there is also evidence that it is biased 

upward by patterns of urbanization and that these biases have not been completely removed by the data 

processing algorithms used to produce climate data sets.   
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4 CLIMATE SENSITIVITY TO CO2 FORCING 

 

Chapter Summary 

There is growing recognition that climate models are not fit for the purpose of determining the 

Equilibrium Climate Sensitivity (ECS) of the climate to increasing CO2. The IPCC has turned to data-

driven approaches including historical data and paleoclimate reconstructions, but their reliability is 

diminished by data inadequacies.  

Data-driven ECS estimates tend to be lower than climate model-generated values. The IPCC AR6 upper 

bound for the likely range of ECS is 4.0°C, lower than the AR5 value of 4.5°C.  This lowering of the 

upper bound seems well justified by paleoclimatic data. The AR6 lower bound for the likely range of 

ECS is 2.5°C, substantially higher than the AR5 value of 1.5°C. This raising of the lower bound is less 

justified; evidence since AR6 finds the lower bound of the likely range to be around 1.8°C.  

 

4.1 Introduction 

The magnitude of the climate’s response to increasing concentrations of CO2 is central to the scientific 

debate on anthropogenic climate change, and so also to the public debate on “climate action.”  The simplest 

measure of that response is the rise in the global average surface temperature, quantified by the Equilibrium 

Climate Sensitivity (ECS).  ECS is defined as the amount of warming expected in response to a doubling 

of CO2 from its pre-industrial concentration of 280 ppm, after all climate components have had time to 

adjust. Some components, like temperatures in the lower atmosphere (troposphere), adjust rapidly, while 

others such as the deep ocean and cryosphere might take as long as centuries. A related measure, the 

Transient Climate Response (TCR), better describes the shorter time scales; it is defined as the amount of 

warming when the CO2 concentration is doubled by rising one percent annually for 70 years.  

The 1979 Charney Report for the U.S. National Academy of Sciences (National Research Council 

1979) proposed that the most likely ECS was 3.0 ± 1.5°C. The IPCC repeatedly reaffirmed that range with 

only minor variations until its most recent AR6. AR5 termed 1.5–4.5°C as the likely range (66 percent 

probability) and stated that ECS is extremely unlikely (95 percent probability) to be below 1.0°C and very 

unlikely (90 percent probability) to exceed 6.5°C.  

The uncertainty in ECS has remained stubbornly wide, despite many individual studies that claimed to 

narrow it (Hausfather 2023). Most recently, AR6 narrowed the likely range to 2.5–4.0°C and deemed the 

very likely range to be 2.0–5.0°C. This narrowing on the low end is disputed, as will be discussed below. 

Uncertainties in ECS are highly consequential for policy making.  As will be discussed in Chapter 11, 

economic models use ECS values to project the costs of CO2 emissions. The traditional value (3.0 °C) has 

typically yielded modest global social costs of CO2 emissions, sufficient to justify some policy actions, but 

mostly deferred to later in this century. If ECS is very high (above 4.5°C) immediate aggressive emission 

controls become more imperative, whereas no CO2 emission controls are economically justifiable for ECS 

below 2.0°C (Dayaratna et al. 2017, 2020). Obtaining a precise estimate is impossible, so policy making 

needs to account for the uncertainty.  

By itself, the equilibrium warming effect of a doubling of atmospheric CO2 is slightly more than 1°C 

(Soden and Held 2006). Larger values of ECS arise from positive feedbacks that amplify the CO2 warming. 

Water vapor feedback is positive: a warmer atmosphere might have more water vapor, which itself is a 

powerful greenhouse gas. Warmer temperatures also result in less snow and sea ice cover, allowing the 

Earth to absorb more of the sun’s radiation. Some simple estimates of these feedbacks increase the ECS to 

around 2°C (Sherwood et al., 2020). Larger values of ECS are associated with positive cloud feedbacks. 
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Climate scientists use multiple lines of evidence to determine the Equilibrium Climate Sensitivity: 

• Climate model simulations 

• Historical observations 

• Paleoclimatic reconstructions 

• Process understanding of feedbacks 

4.2 Model-based estimates of climate sensitivity  

The ECS ranges given in IPCC AR4 and AR5 were obtained primarily by examining the behavior of 

large-scale climate models, also called General Circulation Models (GCMs). However, the IPCC changed 

course in its AR6 when it turned to a more direct data-driven methodology. Here we discuss some of the 

pitfalls of using GCMs to try to determine the Earth’s climate sensitivity. 

ECS can be determined from climate model simulations by doubling the concentration of CO2 and 

allowing several centuries for the warming to equilibrate. To avoid the need for such long simulations, 

“effective climate sensitivity” is commonly evaluated from a 150-year simulation in response to a sudden 

quadrupling of CO2.  

In principle, ECS is an emergent property of GCMs—that is, it is not directly parameterized or tuned 

but rather emerges in the results of the simulation. Otherwise plausible GCMs and parameter selections 

have been discarded because of perceived conflict with an expected warming rate, or aversion to a model’s 

climate sensitivity being outside an accepted range (Mauritsen et al. 2012).  This practice was commonplace 

for the models used in AR4; modelers have moved away from this practice with time.   However, even in 

a CMIP6 model, Mauritsen and Roeckner (2020) state the following regarding their Max Planck Institute 

(MPI) climate model (emphasis added):   

 

“We have documented how we tuned the MPI-ESM1.2 global climate model to match the 

instrumental record of warming; an endeavor which has clearly been successful. Due to the 

historical order of events, the choice was to do this practically by targeting an ECS of about 3 K 

using cloud feedbacks, as opposed to tuning the aerosol forcing.”   

 

In other words, the MPI modelers chose an ECS value of 3°C and then tuned the cloud parameterizations 

to match their intended result.   

As noted, direct warming from CO2 doubling is only about 1°C (Soden and Held 2006); further 

warming arises from climate feedbacks that are not explicitly resolved by the GCM but rely on 

parameterizations of physical processes. Higher values of ECS arise primarily from positive cloud 

feedbacks, whereas the magnitude and even the sign of the feedbacks are very uncertain. Elements of cloud 

feedback include changes in the latitudinal distribution of clouds, changes in the distribution of cloud height 

(changes in low versus high clouds), changes to the phase of clouds (ice versus liquid), changes in cloud 

particle size (associated with changes in concentration and/or composition of aerosol particles), changes in 

the precipitation efficiency of clouds, and even changes in how clouds are distributed over the daily solar 

cycle (Curry and Webster, 1999). It is difficult for GCMs to simulate any of these processes correctly owing 

to their small scale, let alone predict how they will change in the future. Further, cloud processes modulate 

the magnitudes of the water vapor, lapse rate, and the surface albedo feedbacks. 
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Figure 4.1 Equilibrium Climate Sensitivities in °C of 37 climate models from the CMIP6 ensemble. 
Identifiers for the various models appear along the horizontal axis. From (Scafetta, 2021) 

 

The spread of ECS values from the CMIP5 ensemble of climate models used in AR5 was 2.0–4.7°C; 

that range increased for the CMIP6 models used in AR6 to between 1.8 and 5.7°C (Chen et al., 2021, 

Scaffeta 2021, see Figure 4.1). Far from resolving the model-based climate sensitivity the range appears to 

be growing. The main cause of the overall upward shift in ECS in CMIP6 relative to CMIP5 is a larger 

positive cloud feedback, driven by changes to the cloud parameterizations in many CMIP6 models (Zelinka 

et al., 2020) 

Because of concerns about model tuning and the high sensitivity to cloud parameterizations, AR6 

(2021) did not rely on climate model simulations in their assessment of climate sensitivity, relying instead on 

data-driven methods. 

 

4.3 Data-driven estimates of climate sensitivity  

Climate sensitivity can also be estimated from instrumental records of surface temperatures and ocean 

heat content, combined with estimates of how climate forcings (e.g., greenhouse gases, solar, volcanoes, 

aerosols) have changed in the past (Otto et al., 2013). Using this information, a simple empirical Energy 

Balance Model can be employed. It requires estimating a feedback parameter whose uncertainties are highly 

amplified in the resulting ECS (Roe and Baker, 2007).  

The accuracy of the data-driven methods depends on the quality of the input data.  Assumptions are 

needed about ocean heat storage, and good data is only available for recent decades. The greatest source of 

uncertainty is the amount and composition of aerosol particles and their interactions with cloud radiative 
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properties (the so-called aerosol indirect effect; see Figures 3.1.1, 3.1.2). Climate models exhibit warming 

in response to GHGs but cooling in response to aerosols (Schwartz et al., 2007). Observed 20th century 

warming can be shown to be consistent either with low ECS and low aerosol cooling, or high ECS and high 

aerosol cooling. Since fossil fuel use adds both GHGs and aerosols to the atmosphere, both effects need to 

be estimated to isolate the warming effect of CO2.  

Paleoclimate proxies are also used to evaluate the sensitivity of past climates by comparing 

paleoclimate changes in the Earth’s temperatures to estimates of changes in forcings. The two most 

informative periods are the last glacial maximum (around 20,000 years ago), which was about 3–7°C colder 

than today, and a mid-Pliocene period (roughly three million years ago), which was 1–3°C warmer than 

today. The limits on cooling during the last glacial maximum give the best single evidence that high values 

of climate sensitivity are unlikely. However, paleoclimate estimates are associated with very large 

uncertainties in the estimated temperatures and forcings. Further, estimates of climate sensitivity based on 

past climate states might not be applicable to the current state of the climate system. 

A recurring theme in the climate literature is that ECS estimates based on historical data are smaller 

than ECS estimates inferred from climate models (Sherwood and Forest 2024). About 15 estimates based 

on historical data appeared in the peer-reviewed literature between 2012 and 2024 yielding ECS best 

estimates between 1.0°C and 2.5°C, although critics have questioned some of the methods and the data 

quality. For AR6, the IPCC placed primary weight on the results of Sherwood et al. (2020) that combined 

historical data and paleoclimate proxies with the process-based approach and yielded a best estimate of 

3.1°C with a likely range of 2.6-3.9°C. Lewis (2022) raised a number of concerns about this result, including 

methodological errors, outdated input values, and use of subjective Bayesian priors in the analysis. Lewis’ 

analysis found that climate sensitivity is estimated to be much lower and better constrained than in the 

Sherwood et al. analysis – median 2.2°C (1.8–2.7°C in the 17–83 percent likely range, and 1.6–3.2°C in the 

5–95 percent very likely range). The IPCC AR6 estimated only a 5 percent probability that ECS was below 

2.3°C, whereas Lewis estimated it to be over 50 percent.  The most recent publications on the debate 

between Sherwood et al. and Lewis further defend their respective positions:  Sherwood and Foster (2024) 

and Lewis (2025). 

An argument emphasized in AR6 is that data-driven ECS estimates might understate the future warming 

response to GHGs because of a so-called “pattern effect” (Forster et al., 2021). The tropical Pacific is 

believed to strongly influence the overall efficiency with which the Earth radiates heat to space, but some 

regions remove heat more efficiently than others. If the west-to-east temperature gradient in the tropical 

Pacific is weakened in a warming climate, warming would concentrate where heat is less efficiently 

removed, raising ECS.  

Most climate models simulate that rising GHGs will weaken the west-east temperature gradient, which 

led the IPCC in AR6 to conclude that data-driven ECS estimates understated the future ECS value. 

However, Seager et al. (2019) pointed out that, contrary to models, the west-east temperature gradient has 

been strengthening over time. They further argued that the mechanism predicting otherwise in climate 

models was based on a faulty characterization of oceanic dynamics and there is no reason to expect the 

gradient to weaken. A similar argument was recently made by Lee et al. (2024), who concluded that “the 

trajectory of the observed trend reflects the response to increasing GHG loading in the atmosphere”; in 

other words, GHG warming should lead to a future strengthening rather than a weakening of the temperature 

gradient. Increased efficiency of atmospheric cooling implies, if anything, that the future ECS in a warming 

climate might be lower than current estimates.  
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4.4 Transient Climate Response 

The Transient Climate Response (TCR) provides a more useful observational constraint on climate 

sensitivity. TCR is the global temperature increase that results when CO2 is increased at an annual rate of 

1 percent over a period of 70 years (i.e., doubled gradually). Relative to the ECS, observationally 

determined values of TCR avoid the problems of uncertainties in ocean heat uptake and the fuzzy boundary 

in defining equilibrium arising from a range of timescales for the longer-term feedback processes (e.g., ice 

sheets). TCR is better constrained by historical warming, than ECS.  AR6 judged the very likely range of 

TCR to be 1.2–2.4°C. In contrast to ECS, the upper bound of TCR is more tightly constrained.  For 

comparison, the TCR values determined by Lewis (2023) are 1.25 to 2.0°C, showing much better agreement 

with AR6 values than was seen in a comparison of the ECS values. 
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5 DISCREPANCIES BETWEEN MODELS AND INSTRUMENTAL 

OBSERVATIONS  

 

Chapter summary 

Climate models show warming biases in many aspects of their reproduction of the past several decades. 

In response to estimated changes in forcing they produce too much warming at the surface (except in 

the models with lowest ECS), too much warming in the lower-and mid-troposphere and too much 

amplification of warming aloft.  

Climate models also produce too much recent stratospheric cooling, invalid hemispheric albedos, too 

much snow loss, and too much warming in the Corn Belt. The IPCC has acknowledged some of these 

issues but not all.  

 

5.1 Introduction 

Climate models are the primary tool used to project future climate changes in response to increasing 

atmospheric levels of anthropogenic greenhouse gases. To assess the fitness of climate models for this 

purpose, it is reasonable to ask how well they reproduce the current climate and its variations over the past 

century. The box “Climate modeling” gives some detail on how climate models work. 

Of great concern is the fact that, after several decades of the climate modeling enterprise involving 

approximately three dozen models operated by research centers around the world, the range of future 

warming they produce in response to a hypothetical doubling of atmospheric CO2 extends over a factor of 

three, as we discussed in the previous chapter. This range of disagreement among models has not decreased 

for decades.  

Problems with climate models are not just in their disagreement over the future, but also in their ability 

to replicate the recent past. Here we review some of the most important metrics of climate model accuracy: 

ability to reproduce historical surface, tropospheric and stratospheric temperature trends; ability to 

reproduce the vertical warming profile; and ability to reproduce other climate features such as snowfall. In 

all cases a persistent finding is that models on average err on the side of too much warming in response to 

estimated historical forcings.  
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BOX: Climate modeling 

All but the simplest climate models represent Earth's land surface using a grid of squares some 100 km wide. To 

simulate the atmosphere, typically 30 or more grid boxes are stacked above these squares. The ocean is modeled 

using a similar but finer grid, resulting in tens of millions of grid boxes for the atmosphere and oceans. 

The computer models, based on physical laws, calculate how air, water, and energy move between grid boxes 

over time. The time step can be as small as 10 minutes, and repeating this process millions of times allows the 

simulation of climate over centuries. Running these models, even on the most powerful supercomputers, can 

take months. Comparing simulation results with historical climate data helps assess the accuracy of a model, 

while projections into the future estimate climate changes under assumed human and natural influences. 

Despite sounding straightforward, climate modeling is highly complex. Many critical processes occur at scales 

smaller than the grid size. For instance, the flows of sunlight and heat in the atmosphere depend strongly on 

cloud cover. Since tracking individual clouds is impractical, researchers must make “subgrid” assumptions 

about the distribution of clouds in each grid box. Snow and ice cover, which affects how much sunlight is 

reflected or absorbed by the surface, is another subgrid factor. 

Each subgrid assumption requires numerical parameters, which must be carefully set. Modelers initially 

estimate these parameters based on physics and observed climate patterns, then run the model. Because early 

results often diverge significantly from real-world observations, they “tune” these parameters to better match 

observed climate features. Different modeling teams use distinct assumptions and tuning strategies, leading to 

varied outcomes. Tuning is a necessary but delicate aspect of climate modeling, as it is for any complex system. 

Poor tuning can result in inaccurate simulations, while excessive tuning risks artificially steering results toward 

predetermined conclusions.  

The spread of model representations of the current climate is very wide. One of the most basic indicators—

Earth’s average surface temperature—varies by about 3ºC across CMIP6 models prior to 1880 (Figure 5.1), 

narrows slightly until 2040 then diverges to over 4 °C. For comparison 20th century warming was only about 

1.0°C. This variation suggests substantial differences among models’ physical processes.  

 

Figure 5.1 CMIP6 Average surface temperature range across 33 models and standard deviation using SSP5-85 scenario. 
Data from KNMI Climate Explorer website at https://climexp.knmi.nl/start.cgi. 

 

Beyond the models’ ability to reproduce features of today’s climate, the critical issue for society is how well 

they predict responses to subtle human influences, such as greenhouse gas emissions, aerosol cooling, and land-

use changes. The most crucial aspect that models must capture correctly is “feedbacks.”  These occur when 

climate changes either amplify or suppress further warming. In general, the modeled net effect of all feedbacks 

doubles or triples the direct warming impact of CO₂. 

 

https://climexp.knmi.nl/start.cgi
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5.2 Surface warming 

A straightforward test of a climate model’s validity is its ability to reproduce historical warming in 

response to known past changes in climate drivers such as greenhouse gases. Figure 5.2 is reproduced from 

Scaffeta (2023), that groups the latest-generation (CMIP6) climate models into low ECS (1.5 to 3.0 degrees 

C), medium ECS (3.0 to 4.5 degrees C) and high ECS (4.5 to 6.0 degrees C), and compares their post-1980 

global average temperature simulation ranges to those of three surface temperature records and one satellite-

based lower troposphere temperature data product.  

The leftmost column shows that the low-ECS models track the post-1980 historical warming record 

reasonably well, but the middle and right columns show that the medium- and high-ECS models 

conspicuously over-predict the warming.  

 

 
Figure 5.2: Model-Observational comparisons for Earth’s surface warming. The columns correspond 
to model groups showing low-ECS (13 models) medium-ECS (11 models) and high-ECS (14 models), 
while the rows correspond to widely-used observed temperature records, the first three showing 
surface averages and the fourth showing the lower troposphere average. In each panel the yellow 
area denotes the mean and range (± one standard deviation) of climate model simulations for that 

group. The thick black line shows the observed annual average temperature in the indicated record.  
Source: Scafetta (2023) Fig.2.  

 

Spencer (2024) has also provided a useful summary of the Model-Observation mismatch by comparing 

trends in surface temperature data products with those in individual climate models, as summarized in 

Figure 5.3; most climate models show substantially more warming than the observations since 1979. 
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Figure 5.3 Global surface air temperature trends (°C/decade), 1979-2024, from various CMIP6 climate 
models (red, 30-model average in orange); and the average of three thermometer datasets 
(HadCRUT5, NOAA Global Temp, and Berkeley 1 deg.) and two reanalysis datasets (ERA5 and 
NCEP/NCAR R1) in blue. Data source: https://climexp.knmi.nl/start.cgi.  

 

5.3 Tropospheric warming 

It has long been known that climate models on average overstate warming in the tropical troposphere. 

This region is an important test of climate models since this is where the signal of anthropogenic greenhouse 

warming emerges first and most strongly. Biases in tropospheric trends indicate model flaws in heat transfer 

processes that carry over to surface warming biases.  

The discrepancy was flagged as a serious inconsistency in the first U.S. Climate Change Science 

Program report (Karl et al. 2006) and has been mentioned in every IPCC report since, but the discrepancy 

has gotten worse over time, and the bias is now global. McKitrick and Christy (2020) compared 

tropospheric warming trends in CMIP6 climate models to observed trends from satellites, weather balloons 

and reanalysis systems. Every model overpredicted the average observed warming trend over 1979-2014 

in both Lower- and Mid-Troposphere layers, both globally and in the tropics. In most individual models the 

bias was statistically significant and on average across models it was highly significant. 
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Figure 5.4 presents the comparisons with data updated to 2024 (McKitrick and Christy 2025). The 

recent warm years moved the observed trend up slightly and widened the trend confidence intervals but the 

overall pattern remains the same: model bias is towards too much warming, in most cases the difference is 

statistically significant and on average the bias is statistically highly significant. McKitrick and Christy 

(2020) also showed that the bias is larger in high-ECS models, but even the models with lower average 

ECS predict too much warming. If future climate models were to realistically represent global tropospheric 

warming, they would likely be less sensitive than even the low-ECS members of the CMIP6 ensemble. 

 

 
Figure 5.4: Observed versus CMIP6 modeled warming trends (°C/decade 1979-2024) in the global 
and tropical lower (LT) and mid-troposphere (MT) using the methodology of McKitrick and Christy 
(2020) on data updated from 2014 to 2024. Blue dots: warming trends with 95 percent confidence 
intervals for 3 data products (radiosondes, reanalysis, and satellites). Blue dashed line: warming 
trend average for 3 observed series. Red dots: modeled warming trends with 95 percent confidence 
intervals in 35 models arranged lowest to highest.  

 

As mentioned previously, the IPCC has long acknowledged the model-observation mismatch. For 

example, AR6 pp. 443-444 offers this on the tropical troposphere (it does not address the global 

comparison): 
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Several studies since AR5 have continued to demonstrate an inconsistency between simulated and 

observed temperature trends in the tropical troposphere, with models simulating more warming 

than observations (Mitchell et al., 2013, 2020; Santer et al., 2017a, b; McKitrick and Christy, 2018; 

Po-Chedley et al., 2021)… Over the 1979–2014 period, models are more consistent with 

observations in the lower troposphere, and least consistent in the upper troposphere around 200 

hPa, where biases exceed 0.1°C per decade. Several studies using CMIP6 models suggest that 

differences in climate sensitivity may be an important factor contributing to the discrepancy 

between the simulated and observed tropospheric temperature trends (McKitrick and Christy, 2020; 

Po-Chedley et al., 2021), though it is difficult to deconvolve the influence of climate sensitivity, 

changes in aerosol forcing and internal variability in contributing to tropospheric warming biases 

(Po-Chedley et al., 2021). Another study found that the absence of a hypothesized negative tropical 

cloud feedback could explain half of the upper troposphere warming bias in one model (Mauritsen 

and Stevens, 2015).   

… In summary, studies continue to find that CMIP5 and CMIP6 model simulations warm more 

than observations in the tropical mid- and upper-troposphere over the 1979–2014 period (Mitchell 

et al., 2013, 2020; Santer et al., 2017a, b; Suárez-Gutiérrez et al., 2017; McKitrick and Christy, 

2018), and that overestimated surface warming is partially responsible (Mitchell et al., 2013; Po-

Chedley et al., 2021). …. Hence, we assess with medium confidence that CMIP5 and CMIP6 

models continue to overestimate observed warming in the upper tropical troposphere over the 

1979–2014 period by at least 0.1°C per decade, 

 

Notably, despite the accumulation of evidence of excess model warming the IPCC assigns only medium 

confidence to the existence of a warming bias.  

 

5.4 Vertical temperature profile mismatch 

Another important model-observational discrepancy is the excess amplification with altitude found in 

climate models. The comparison was in AR5 Chapter 10, although only in the online supplement (Figure 

10.SM.1) and only in a figure whose formatting obscured the point. Figure 10.SM.1 is not referenced in the 

main IPCC report nor in any summary so readers would not have been aware of it. Although not apparent 

at first glance, it shows that the 1979-2010 warming in the lower troposphere is so small as to be consistent 

with no GHG forcing at all and is inconsistent with the model runs that do have GHG forcing. In Figure 5.6 

we adapt IPCC AR5 Figure 10.SM.1 to draw out this critical point.  
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Figure 5.5: Vertical warming pattern for tropics (20S to 20N). Horizontal axis: 

°C/decade. Source: Annotated version of IPCC AR5 Figure 10.SM.1 

 

 

Figure 5.5 compares model and observational temperature trends by altitude between 20S and 20N (the 

tropics). In this region where the models say the warming should be strongest, the observations (shown here 

in white) lie within the blue “No CO2” band and entirely outside the “with CO2” red envelope. This means 

that in the entire tropical atmospheric column from the surface to the base of the stratosphere, observed 

warming trends are so small as to be consistent with the output of models that have no anthropogenic CO2, 

and inconsistent with the entire envelope of warming trends generated by models forced with increased 

CO2. 

A similar comparison is shown in Christy and McNider (2017), an updated version of which (covering 

1979-2024) is reproduced as Figure 5.6. Modeled temperature trends exceed observations from the surface 

through the top of the troposphere, with observed trends below the entire model range at most pressure 

levels. Also shown in Figure 5.6 is the tropical tropospheric temperature (TTT) average from three satellite 

data products (NOAA, UAH and RSS) compared to the same layer average from climate models for 1979-

2024. Again, the observed trends lie below the entire model range.   

The wide range of choices made by modelers to characterize the physical processes in the models (see 

Box: Climate Modeling in Section 5.1 above) is seen by the large spread of trends in the middle troposphere, 

±40 percent about the median (Figure 5.6). This vividly illustrates the uncertainties in attempts to model 

(parameterize) a complex system involving turbulence, moist thermodynamics, and energy fluxes over the 

full range of the tropical atmosphere’s time and space scales. 
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Figure 5.6: Modeled versus observed warming, tropical troposphere. Source: updated 

from Christy and McNider (2017) including data through 2024 and CMIP6 model outputs. 
Red line: model average. Green and blue lines: observational series (reanalysis). 

 

 

This discrepancy has been the source of much controversy, with some arguing that even if there is very 

little observed warming aloft in the tropics, a “hotspot” still exists in the sense that the warming aloft is 

greater than at the surface (Santer et al. 2008). But there is good evidence that models also exaggerate the 

amplification rate. Klotzbach et al. (2009), showed that models project greater amplification with altitude 

than is observed. This result was subsequently confirmed by detailed time series analysis (Vogelsang and 

Nawaz 2016) which found that the model-observational difference is statistically significant.  

The atmosphere’s temperature profile is a case where models are not merely uncertain but also show a 

common warming bias relative to observations. This suggests that they misrepresent certain fundamental 

feedback processes.   

The IPCC AR6 did not assess this issue.  

 

5.5 Stratospheric cooling 

An important element of the expected general “fingerprint” of anthropogenic climate change is 

simultaneous warming of the troposphere and cooling of the stratosphere. The latter feature is also 

influenced by ozone depletion and recovery. AR6 acknowledged that cooling had been observed but only 

until the year 2000. The stratosphere has shown some warming since, contrary to model projections.  

AR6 WG1 Ch 2 pp. 327-9 states: 

 



 

39 

 

Temperatures averaged through the full lower stratosphere (roughly 10–25 km) have decreased 

over 1980–2019 in all data products, with the bulk of the decrease prior to 2000. The decrease holds 

even if the influence of the El Chichon (1982) and Pinatubo (1991) volcanic eruptions on the trend, 

found by Steiner et al. (2020a) to have increased the 1979–2018 cooling trend by 0.06°C per 

decade, is removed. Most datasets show no significant or only marginally significant trends over 

2000–2019, and the results of Philipona et al. (2018) show weak increases over 2000–2015 in the 

very lowermost stratosphere sampled by radiosondes…. 

It is virtually certain that the lower stratosphere has cooled since the mid-20th century. However, 

most datasets show that lower stratospheric temperatures have stabilized since the mid-1990s with 

no significant change over the last 20 years. It is likely that middle and upper stratospheric 

temperatures have decreased since 1980, but there is low confidence in the magnitude. 

 

The cited source, Philipona et al. (2018), in an article entitled “Radiosondes Show That After Decades of 

Cooling, the Lower Stratosphere Is Now Warming”, stated: 

 

In response to continued greenhouse gas increases and stratospheric ozone depletion, climate 

models project continued tropospheric warming and stratospheric cooling over the coming decades. 

Global average satellite observations of lower stratospheric temperatures exhibit no significant 

trends since the turn of the century. In contrast, an analysis of vertically resolved radiosonde 

measurements from 60 stations shows an increase of lower stratospheric temperature since the turn 

of the century at altitudes between 15 and 30 km and over most continents. Trend estimates are 

somewhat sensitive to homogeneity assessment choices, but all investigated radiosonde data sets 

suggest a change from late twentieth century cooling to early 21st century warming in the lower 

stratosphere. 

 

Santer et al. (2023) use updated data to show that a cooling trend has not re-emerged in the lower 

stratosphere. 

A combination of tropospheric warming and stratospheric cooling is a commonly cited “fingerprint” of 

anthropogenic climate change. Stratospheric warming since 2000 coincides with continued surface and 

tropospheric warming, a pattern that is not found in climate model simulations and is not apparently 

consistent with the anthropogenic fingerprint.  

5.6 Snow cover mismatch 

Data compiled by the Rutgers University Snow Lab show that Northern Hemisphere winter snow cover 

is not decreasing (Figure 5.7); if anything, it shows an increasing trend.  
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Figure 5.7: Northern Hemisphere Winter Snow extent. 

Source: https://climate.rutgers.edu/snowcover/chart_seasonal.php?ui_set=nhland&ui_season=1 
(accessed May 27, 2025) 

 

 

Yet models project declining Northern Hemisphere snow cover in a warming climate, as described by 

Connolly et al. (2019).  

 

The climate models were found to poorly explain the observed trends [in Northern Hemisphere 

snow cover]. While the models suggest snow cover should have steadily decreased for all four 

seasons, only spring and summer exhibited a long-term decrease, and the pattern of the observed 

decreases for these seasons was quite different from the modelled predictions. Moreover, the 

observed trends for autumn and winter suggest a long-term increase, although these trends were 

not statistically significant.  

 

AR6 largely confines its discussion of changing Northern Hemisphere snow cover extent (SCE) to the 

Spring season, for which models and observations agree on a downward trend. Regarding Winter changes 

it remarks as follows (AR6 WGI Ch. 2 p. 344): 

 

Assessment of SCE trends in the NH since 1978 indicates that for the October to February period 

there is substantial uncertainty in trends with the sign dependent on the observational product. 

Analysis using the NOAA Climate Data Record shows an increase in October to February SCE 

(Hernández-Henríquez et al., 2015; Kunkel et al., 2016) while analyses based on satellite borne 
optical sensors (Hori et al., 2017) or multi-observation products (Mudryk et al., 2020) show a 

negative trend for all seasons.  

https://climate.rutgers.edu/snowcover/chart_seasonal.php?ui_set=nhland&ui_season=1
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AR6 WGI Chapter 9 (p. 1284) points out that the NOAA Climate Data Record showing increased fall 

and winter SCE is inconsistent with land-based observations and model-based data sets. It notes that using 

optical satellite imagery to infer SCE in winter is challenging due to cloud cover and decreased solar 

illumination in winter months. Focusing on the Pacific Coast states (CA, OR and WA) cold season 

mountain snowfall that melts in spring and summer provides a substantial portion of warm season water 

resources. A comprehensive reconstruction of snowfall for the main source regions (Cascades and Sierra 

Nevada Mountains) indicates no significant trends in annual totals since the late 19th century (Christy 

2022). 

In summary, the up-to-date Rutgers SCE database indicates a mismatch between models and 

observations. Further work to reconcile conflicting trends in observational data sets is required.  

 

5.7 Hemispheric symmetry of the planetary albedo 

The planetary albedo is the fraction of incoming solar radiation reflected by the Earth back to space.  It 

is an important element of the radiative energy balance and influences whether the planet will warm or cool 

over time. The planetary albedo is typically estimated at around 0.30; variations on the scale of 0.01 

correspond to changes in solar forcing of about 3 W/m2, an amount larger than current anthropogenic 

forcing. It has long been noted that models disagree with each other and with observations on the value of 

the global planetary albedo (Stephens et al. 2015).  

An intriguing property of the Earth’s albedo is that, on average, the Northern Hemisphere (NH) and 

Southern Hemisphere (SH) have had nearly the same albedo, at least throughout the fifty-year satellite 

record (Stephens et al., 2015). This symmetry is surprising, because the SH has much more ocean than 

land.  Since ocean is less reflective than land, the NH should have higher albedo. Clouds (which are highly 

reflective) are more common in the NH and so compensate the surface albedo imbalances of the two 

hemispheres. Datseris and Stephens (2021) show that this cloud compensation comes from the extra-

tropical storm tracks of the SH, which are cloudier than those of the NH.  While the mechanism for this 

hemispheric symmetry is unclear, it likely operates on large temporal and spatial scales.  

The hemispheric symmetry of the albedo is a simple gross metric for climate models. Rugenstein and 

Hakuba (2023) defined that metric as the difference between the NH and SH annual mean albedos, 

expressed as Wm−2 of the reflected sunlight, and compiled it for the CMIP6 climate models, as shown in 

Figure 5.8. Most of the CMIP6 models do not reproduce the small observed asymmetry (about 0.1 Wm-2) 

and even disagree as to which hemisphere is more reflective. Moreover, the magnitude of the asymmetry 

ranges up to 5 Wm-2 in some models, twice as large as the current anthropogenic forcing (about 2.7 Wm-2). 

The significance of unphysical albedo asymmetries in the climate models is not yet fully known.  

However, other model studies suggest that interhemispheric changes in albedo can alter poleward heat 

fluxes, meridional temperature gradients, storminess, and differences in hemispheric ocean heat storage.  

The discrepancy between models and observations further raises issues regarding cloud feedback processes 

and so more generally diminishes confidence in model projections of the future climate. 
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Figure 5.8. Differences in 20-year average reflectivity (albedo) between the Northern and 
Southern Hemispheres for CMIP6 models used in the most recent IPCC assessment (colored bars). 
The very small observed difference is indicated by the vertical black line. From Rugenstein and 
Hakuba (2023). 

 

5.8 U.S. Corn Belt 

One of the largest discrepancies between models and observations is in the U.S. Corn Belt, a region of 

particular importance to global food production. Figure 5.9 shows the warming trends for summertime 

(June, July, August) for the 12-state Corn Belt (IN, IA, IL, ND, SD, MO, MN, WI, MI, OH, KS, NE) during 

1973-2022. All 36 climate models (red) warm far too rapidly compared to observations (blue).  

 



 

43 

 

 
Figure 5.9: Modeled versus observed warming trends in the U.S. Corn Belt, 1973-2022. 

 

 

As discussed in Chapter 9, the anticipated negative effects of increasing temperatures on U.S. corn 

yields have not materialized, in contrast to widely publicized studies proclaiming that theoretical future 

impacts are already being experienced (e.g., Seager et al., 2018). 

The IPCC acknowledges limitations in the accuracy of regional climate model outputs. This example 

shows that users need to assess model projections carefully on a case-by-case basis since local biases might 

be sufficiently large that the models are simply not fit for purpose. As has recently been noted by two 

leaders of the modeling community (emphasis added)  

 

… for many key applications that require regional climate model output or for assessing large-

scale changes from small scale processes, we believe that the current generation of models 

is not fit for purpose.  (Palmer and Stevens 2019) 

 

To summarize:  

• Climate models show warming biases in many aspects of their reproduction of the past few decades.  

• They produce too much warming at the surface (except in the models with lowest ECS), too much 

warming in the lower-and mid-troposphere and too much amplification of warming aloft  
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• They also produce too much stratospheric cooling, too much snow loss, and too much warming in 

the U.S. Corn Belt. 

• The hemispheric albedo difference in individual climate models ranges widely in sign and 

magnitude compared to observations. The range in W/m2 is three times larger than the direct 

anthropogenic forcing of CO2.  

• The IPCC has acknowledged some of these issues but not others.  
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6 EXTREME WEATHER  

 

Chapter Summary 

Most types of extreme weather exhibit no statistically significant long-term trends over the available 

historical record. While there has been an increase in hot days in the U.S. since the 1950s, a point 

emphasized by AR6, numbers are still low relative to the 1920s and 1930s. Extreme convective storms, 

hurricanes, tornadoes, floods and droughts exhibit considerable natural variability, but long-term 

increases are not detected. Some increases in extreme precipitation events can be detected in some 

regions over short intervals but the trends do not persist over long periods and at the regional scale. 
Wildfires are not more common in the U.S. than they were in the 1980s. Burned area increased from 

the 1960s to the early 2000’s, however it is low compared to the estimated natural baseline level. U.S. 

wildfire activity is strongly affected by forest management practices.  

 

6.1 Introduction 

High impact weather extremes, usually related to temperature, precipitation and/or high wind, can 

disrupt infrastructure and therefore endanger human health and wellbeing.  The issue is not whether 

extremes occur. Rather, it is whether there are long-term (decadal scale) changes in the frequency or 

character of extremes (“detection”), as well as the extent to which such changes and the attendant changes 

in hazards are caused by anthropogenic emissions of greenhouse gases (“attribution”; e.g., AR6 Seneviratne 

et al. 2021).   

Process-based understanding and simple thermodynamic arguments have been invoked to assert that 

warming is worsening extreme weather events. However, it is naïve to assume that any recent extreme event 

is caused by human influences on the climate.  Climate is about the statistical properties of weather over 

decades, not single events.  Further, there are only about 130 years of reliable observational records that 

can be analyzed statistically.  That brief interval does not begin to contain all the extreme events that the 

climate system can create on its own.  Over geologic time the climate system has generated an (essentially) 

infinite variety of weather patterns and extremes that humans have never observed and thus are absent from 

the databases used to determine extreme statistics [see Perils of short data records below]. For that reason, 

attributing an extreme event unprecedented in the record requires assumptions about the magnitude of 

natural variations.   

This chapter is concerned with detection of trends in extreme weather, while Chapter 8 considers causal 

attribution, with Section 8.4 specifically addressing extreme weather. If no trend is detected, then clearly 

there is no basis for attribution. But even where a trend is observed, attribution to human-caused warming 

does not necessarily follow.  

This is especially true for precipitation events. The hydrological literature has long noted the presence 

of long, slow and irregular oscillations in rainfall data (Hurst 1951, Cohn and Lins 2005, Markonis and 

Koutsoyiannis 2016). The characteristics of these natural patterns require long records to accurately 

estimate variability. Analysis of records that are short relative to the scale of natural variability will tend to 

misrepresent trends, therefore overstating the significance of apparent trends and underestimating the 

likelihood of extreme events (Cohn and Lins 2005).  
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Figure 6.1.1: The annual minimum depth of the Nile River near Cairo over more than 650 
years from 622 to 1284 A.D.  The data, measured in meters, shows a characteristic pattern 
of year-to-year fluctuations around longer-term trends.  Data from Koutsoyiannis (2013) 

 

 

A good example of this is the eight-century long record of the annual minimum height of the Nile River 

observed at Roda Island in Cairo shown in Figure 6.1.1.  The Nile River is fed by precipitation over a 4 

million square mile drainage basin, an area equal to about one third of CONUS. Since human influences on 

the global climate were negligible long before the 20th century, the century-scale variability of the thirty-

year average is entirely natural; Egyptians of the seventh and eight centuries would have been incorrect to 

assume that the worsening drought during that time was the “new normal.”   

With these caveats in mind, we examine the evidence for changes in selected weather and climate 

extremes. A recurring theme is the wide gap between public perceptions and scientific evidence. It has 

become routine in media coverage, government and private sector discussions, and even in some academic 

literature to make generalized assertions that extreme weather of all types is getting worse due to GHGs 

and “climate change.” Yet expert assessments typically have not drawn such sweeping conclusions and 

instead have emphasized the difficulty both of identifying specific trends and establishing a causal 

connection with anthropogenic forcing.  

In the sections to follow we provide excerpts from various IPCC and NCA assessment reports denoting 

the sources as follows: 

SREX: The IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance 

Climate Change Adaptation (2012) 

AR6: The IPCC Sixth Assessment Report Working Group 1 (2021).  

NCA4: The U.S. Climate Science Special Report of the Fourth National Climate Assessment (2017) 

Volume I.  

NCA5: Fifth National Climate Assessment (2023). 

In the excerpts. italics are in the original whereas boldface emphasis has been added.  
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Additionally we use standard government sources to provide information through 2024 wherever possible. 

 

6.2 Hurricanes and tropical cyclones 

AR6 provides the following assessment of tropical cyclones (TCs; used here as a synonym for 

hurricanes): 

 

AR6: There is low confidence in most reported long-term (multidecadal to centennial) trends in TC 

frequency or intensity-based metrics due to changes in the technology used to collect the best-track 

data.  (IPCC, 2021 p. 1585) 

AR6: It is likely that the global proportion of major (Category 3–5) tropical cyclone occurrence has 

increased over the last four decades . . . There is low confidence in long-term (multi-decadal to 

centennial) trends in the frequency of all-category tropical cyclones.  (IPCC, 2023 SPM p. 9) 

AR6: A subset of the best-track data corresponding to hurricanes that have directly impacted the 

United States since 1900 is considered to be reliable, and shows no trend in the frequency of U.S. 

landfall events. (IPCC 2021 p. 1585) 

 

Since 1980, when satellite observations first fully covered the global oceans, we have confidence in the 

numbers of total global hurricanes and major hurricanes (Category 3 and higher).  Figure 6.2.1 shows that 

on average, each year there are about 50 hurricanes, with about 25 reaching major hurricane status (Maue, 

2025). There is substantial year-to-year and decadal variability, a weak decrease in the number of 

hurricanes, and a slight but insignificant increase in the number of major hurricanes. These two trends 

combine to create an overall increase in the proportion of major hurricanes.   

Global hurricane statistics are dominated by the Northwest Pacific Ocean, which accounts for ~35 

percent of total global hurricanes, whereas the Atlantic accounts for ~15 percent of global hurricanes 

(Colorado State University, 2025).  Data in the Atlantic basin extends further back than in the other ocean 

basins and is most relevant to U.S. policy makers. 
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Figure 6.2.1: Global frequency of hurricanes and major hurricanes since 1980. Source: Updated 

from Maue 2011. 

 

Figure 6.2.2 shows the frequency of Atlantic hurricanes and major hurricanes (Category 3 and higher) 

back to 1920.  Data prior to 1965 (the onset of satellite observations in the Atlantic, shaded in blue) shows 

some undercounting, with data prior to 1920 showing substantial undercounting (Vecchi and Knutson, 

2011). All measures of Atlantic hurricane activity show a significant increase since 1970. However, the 

period from 1971-1994 saw exceptionally low activity, with high activity (comparable to the past two 

decades, even with undercounting) also observed during the 1950’s and 1960’s, and even in the 1930’s. 
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Figure 6.2.2: Atlantic frequency of hurricanes (HR) and major hurricanes (MHR) since 1920.  Source 
National Hurricane Center (2024) 

 

Figure 6.2.2 shows that Atlantic hurricanes vary strongly on decadal and multidecadal time scales. 

These variations are associated primarily with the Atlantic Multidecadal Oscillation (AMO), which is 

manifest in basin-wide sea surface temperature and sea level pressure fluctuations connected to large scale 

ocean circulation patterns.  The AMO was in its warm phase during 1926-1970 and 1995-present, but in its 

cool phase during 1971-1994. It has its greatest impact on the number of major hurricanes (Category 3+), 

which Goldenberg et al. (2001) associated with above normal SSTs and decreased vertical shear in the 

AMO warm phase (see also Bell and Chelliah, 2006; Klotzbach et al., 2018). 

Klotzbach et al. (2018) conducted a comprehensive evaluation of the landfalling hurricane data for the 

Continental U.S. since 1900.  Figure 6.2.3 updates their analysis through 2024.  While the largest numbers 

of landfalling hurricanes are from 2004, 2005 and 2020, there is no statistically significant trend since 1920. 

Figure 6.2.3 also shows the time series for major hurricane landfalls (Category 3-5). The largest year in the 

record is 2005, with 4 major hurricane landfalls. However, following 2005 there were no major hurricanes 

striking the U.S through 2016, the longest such period since 1920. 
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Figure 6.2.3: U.S. landfalling frequency of hurricanes (HR) and major hurricanes (MHR) since 1920.  
Source NOAA HRD(a) (2024) 

 

Figure 6.2.3 shows substantial interannual to multidecadal variability in U.S. landfall activity.   

Klotzbach et al. (2018) examined how the landfall counts vary with ENSO (El Niño versus La Niña) and 

the warm versus cold phases of the Atlantic Multidecadal Oscillation (AMO).   

Villarini et al. (2012) provide an analysis of U.S. hurricane landfalls back to 1878. While it is possible 

that some landfalls were missed in the late 19th century owing to sparsely populated regions on the Gulf 

Coast, it is remarkable that the highest year in the entire record is 1886, with 7 hurricane landfalls, when 

human influences on the climate were much smaller than they are today. 

Table 6.2.1 shows the 10 strongest hurricanes (plus ties) to make U.S. landfall.  Of the hurricanes that 

have made landfall with sustained winds greater than 150 mph, only one has occurred in the 21st century. 

In summary, analyses of both global and regional variability and trends of hurricane activity provide 

the basis for detecting changes and understanding their causes. The relatively short historical record of 

hurricane activity, and the even shorter record from the satellite era, is not sufficient to assess whether 

recent hurricane activity is unusual relative to the background natural variability. Atlantic hurricane 

processes are influenced substantially by the natural modes of ocean circulation variability in the Atlantic, 

notably the Atlantic Multidecadal Oscillation. While it has long been hypothesized that a rising global sea 

surface temperature would cause an increase in hurricane intensity, identification of any significant trend 

in the hurricane data is hampered by a short data record and substantial natural variability. 

Process-based understanding also suggests that storm surges and rainfall from hurricanes should be 

increasing with warmer temperatures.  However, the relatively small number of hurricanes with varying 

landfall locations and the complex dynamics associated with each storm preclude meaningful detection of 

change. 
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Rank Year 
Landfall Wind  

(MPH) 
Name 

1 1935 185 "Labor Day" 

2 1969 175 Camille 

3 1992 165 Andrew 

4 2018 160 Michael 

5 1856 150 "Last Island" 

5 1886 150 "Indianola" 

5 1919 150 --------- 

5 1932 150 "Freeport" 

5 2004 150 Charley 

5 2020 150 Laura 

5 2021 150 Ida 

5 2022 150 Ian 

Table 6.2.1  Strongest hurricanes to make landfall along the U.S. coast. Source (NOAA 
HRD(b), 2024) 

 

6.3 Temperature extremes  

The AR6 assessment focused on the period after 1950 and reported increasing trends in heatwave 

frequency and intensity. However, NCA4 noted that heatwave activity in the U.S. reached a peak in the 

1930s (Figure 6.3.1). 

 

AR6: It is virtually certain that hot extremes (including heatwaves) have become more frequent 

and more intense across most land regions since the 1950s, while cold extremes (including cold 

waves) have become less frequent and less severe (SPM, A3.1) 

AR6: In North America, there is very robust evidence for a very likely increase in the intensity 

and frequency of hot extremes and decrease in the intensity and frequency of cold extremes for 

the whole continent, though there are substantial spatial and seasonal variations in the trends. 

Minimum temperatures display warming consistently across the continent, while there are more 

contrasting trends in the annual maximum daily temperatures in parts of the USA. (Chapter 11, 

p 1550) 

NCA4: Changes in warm extremes are more nuanced than changes in cold extremes. For 

instance, the warmest daily temperature of the year increased in some parts of the West over 

the past century, but there were decreases in almost all locations east of the Rocky Mountains. 

In fact, all eastern regions experienced a net decrease, most notably the Midwest (about 2.2°F 

[1.2°C]) and the Southeast (roughly 1.5°F [0.8°C]). (pp. 190-191) 

NCA4: Since the mid-1960s, there has been only a very slight increase in the warmest daily 

temperature of the year (amidst large interannual variability). Heat waves (6-day periods with 

a maximum temperature above the 90th percentile for 1961–1990) increased in frequency until 

the mid-1930s, became considerably less common through the mid-1960s, and increased in 

frequency again thereafter. As with warm daily temperatures, heat wave magnitude reached 

a maximum in the 1930s. (pp. 190-191) 
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Figure 6.3.1: U.S. Heat waves since 1900. Source: NCA4 Figure 6.4 

 

6.3.1 Temperatures in the U.S. are becoming less extreme 

Daily maximum temperatures in the warm season (Tmax, May-Sep) and daily minimum temperatures 

in the cold season (Tmin, Dec-Mar) are available beginning in Dec 1898 (126 years). The dataset consists 

of 1,211 CONUS stations designated as United States Historical Climate Network or USHCN stations (see 

Figure 6.3.2; Quinlan et al. 1987, Karl et al. 1990). These stations were selected by NOAA as having the 

fewest problematic issues with gaps, station moves, and instrument changes. Where gaps still exist, nearby 

stations (bias-corrected) were merged so that the median volume of data available for a station is 98%.  

Although there are certainly errors in the dataset, including unresolved spurious warming due to UHI effects 

that especially bias Tmin records, this data set is sufficiently accurate for assessing trends in Tmax heat 

extremes.  
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Figure 6.3.2 Locations of USHCN temperature stations. Source: USHCN. 

 

 

We begin with the question of whether the occurrence of daily record high or low temperatures has 

changed since Dec 1898.  Each warm-season has 153 days (1 May to 30 Sep) and each cold-season has 122 

days (1 Dec to 31 Mar).  For each station and day, we calculated the year in which the record highest 

(lowest) temperature occurred.  With 126 years of observations, if there were no temperature trends over 

time, the expected number of records for Tmax would be 1.21 (=153/126) per station per year and for Tmin 

0.96 (=122/126) per station per year.  

Figure 6.3.3 shows the observed distribution in time of the occurrence of these extreme events.  There 

is a common feature in many metrics of warm-season extremes in the CONUS - the exceptional heat of the 

1920s and especially the 1930s, peaking in 1936.  On a per-station average, 60 percent of the Tmax records 

and 59 percent of the Tmin records occurred in the first half of the period (1899-1961).  
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Figure 6.3.3 Number of daily record High (red) and Low (blue) temperatures for warm and cold 
seasons in the CONUS.  The lines represent the 15-year running, centered average.  Source: 1,211 
USHCN stations supplemented as needed to achieve a minimum of 92 percent of observations in 
the 126-year period since Dec 1898. US48: contiguous U.S. states. Tmax: maximum temperature. 
Tmin: minimum temperature. 

 

 

On the cold side, the Valentine’s Day Arctic outbreak in Feb 1899 stands as the most extensive cold 

extreme experienced by CONUS, with 1917 in 2nd place. The frequency of cold records has declined, 

especially over the last quarter of the period in which only 13 percent of the extreme cold events were 

measured.  In contrast, 25 percent of the extreme Tmax records were achieved in the last quarter, in 

accordance with statistical expectations. These general features have been noted in past assessments (see 

above, IPCC AR6, NCA4). Combining the two histories, the overall reduction in numbers of both cold and 

hot extremes over the past century indicates a climate less prone to extremes.  

This pattern is also shown in Figure 6.3.4. For each station and for each year the hottest warm season 

and coldest cold-season temperatures were calculated. Then the differences between these were computed 

by station and geographically-averaged over all stations, thus yielding an annual measure of the expected 

range of local extreme temperatures for each year. Figure 6.3.4 shows the 15-year trailing average of this 

measure, which has clearly declined over the past century. 

 

 

 



 

56 

 

 
Figure 6.3.4.  15-year trailing average of the difference each year of each station’s hottest warm-
season Tmax and coldest cold-season Tmin relative to the long-term average.  Source: Author 
analysis of USHCN data. 

 

The average difference for each station between the hottest summer Tmax and coldest winter Tmin has 

declined by about 5°F in the past 126 years.  The decline is due mostly to warmer winter Tmin, but a decline 

in summer Tmax is also a factor.  The rise in Tmin has been strongly related to the growing presence of 

manufactured surfaces around the weather stations over the last 100+ years (the so-called urban heat island 

effect; Section 3.3, Karl et al. 1988, Runnals and Oke 2006, and Spencer et al. 2025).  

In summary, while temperature extremes are regularly experienced in the U.S. and attract a great deal 

of media attention, long term records show the U.S. climate has become less extreme over time (milder) 

when measured by the range between warm season maxima and cold season minima.  

6.3.2 Exceedances of a heat threshold 

Under the heading of “The Risk of Temperature Extremes is Changing”, the most recent U.S. National 

Climate Assessment report (NCA5) notes the increase in a threshold metric of number of days at or above 

95°F, stating, 

 

The western U.S. has been particularly affected by extreme heat since the 1980s …, experiencing 

a larger increase in days over 95°F, as would be expected given the greater warming in that region 

relative to the eastern US.  Several major heatwaves have affected the U.S. since 2018, including a 

record-shattering event in the Pacific Northwest in 2021. 

 

Are the occurrences of 95°F days changing? In a climate as varied as that of CONUS, threshold 

statistics can be misleading. A region with many stations that have near 95°F Tmax average temperatures 

in the summer might see large swings in the metric when only small changes in average temperature occur.  

Elsewhere with stations that either rarely or virtually always achieve 95°F Tmax temperatures, a small 

change will not have much impact on the results.   
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Figure 6.3.5.  Total number of days ≥ 95°F in 6-yr periods, U.S. 48 (bars) and regions (lines).  A 6-

year period is used as this evenly divides the 126-year record.  Results are robust to using periods 
from 2 to 11 days. US48: contiguous U.S. states. See Figure 6.3.2 for region names. Source: Author 
analysis of USHCN data. 

 

In the past 126 years, the average CONUS station experienced 129 days exceeding 95°C per 6-yr 

period, but the regional values range from 278 in the Southern Plains to 9 in the Northeast.  Thus, such 

threshold analyses must be interpreted with caution. Figure 6.3.5 shows that only three of the nine regions, 

all in the West, have experienced upward trends in the number of 95°F or hotter days (dashed lines).  The 

CONUS as a whole has not, and the other six regions have experienced declines.  

The Pacific NW heatwave of 2021 referenced in the NCA5 quote will be examined more closely in 

Section 8.6.1.  The evidence indicates that it was a single, unprecedented event in the record, not part of a 

pattern of increasing extreme heat.  For example, the 5-day average tropospheric grid-point temperature 

anomaly over the Pacific NW during that event was +10.8 C, the most extreme Northern Hemisphere grid 

point summer anomaly in the 46 years from over 4 million grid values.  In contrast, the global temperature 

anomaly during that time was virtually zero (+0.03 C, Mass et al. 2024).    

6.3.3 Heatwaves 

Heatwaves (consecutive days that exceed an extreme threshold) have a greater societal impact than a 

single daily record temperature.  We measure “Heatwave Days” here as the count of all days in May-Sep 

each year that exceed the 90th percentile for that day and that lie within a period of at least six consecutive 

days. This is equivalent to the method used in NCA4, except that the reference period here is the entire 

record 1899-2024 while NCA4 truncated the reference period to 1961-1990, which was a cool interval. 

(The pattern of results shown below does not depend on the choice of reference period.) That truncation 

boosts positive results (days exceeding the 90th percentile) in years warmer than the reference period, 

especially starting in 1960 and moving to the present (see Figure 6.3.6 and discussion below).    
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Figure 6.3.6 15-year trailing average of number of heatwave days per year per station in the 
CONUS (black line) and two regions: West (red), Central-east (green).   

 

 

Figure 6.3.6 indicates that there are regional variations in heatwave activity. The excessive heat of the 

first half of the 20th century occurred primarily in the eastern two-thirds of the nation, while the West has 

seen a recent increase of heatwave days (NCA5). This indicates that the background warm season 

circulation favored heatwaves in the eastern portions of the country in the first half of the 20th century, but 

in the 21st century the patterns have favored heatwaves in the West.  For CONUS as a whole, heatwaves 

are no more common today than they were a century ago, consistent with the upper panel of our Figure 

6.4.1 taken from NCA4. 

This metric varies significantly with region.  The four northern regions (Pacific NW, Northern Plains, 

Upper Midwest, and Northeast) on average experience 15 to 27 heatwave days per 15-year period.  In 

contrast, the five southern regions (Pacific Southwest, 4-Corners, Southern Plains, Ohio Valley and 

Southeast) see 37 to 54 such days, essentially twice as many.  This suggests the summer circulation pattern 

is more prone to stationary events in the southern regions while transient systems in the northern regions 

are more common and thus cut short these potentially longer events. 

The analysis of heatwaves is an example of why it is important to consider complete datasets and 

appropriate metrics. The NCA5 directs readers to the website 

https://www.globalchange.gov/indicators/heat-waves (USGCRP 2023) to view a figure showing the 

number of urban heatwaves by decade from the 1960s, which we reproduce as Figure 6.3.7.  

 

https://www.globalchange.gov/indicators/heat-waves
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Figure 6.3.7: Average number of urban heatwaves per year for 50 large U.S. metropolitan areas, 
a misleading metric for reasons explained in the text. From 
https://www.globalchange.gov/indicators/heat-waves  (accessed May 22, 2025). 

 

The figure shows a monotonic increase in each decade from two occurrences per year in the 1960s to 

six in the 2020s.  The definition of a heatwave used is an unusual but practical measure of human discomfort 

- a period of at least 2 consecutive days when the minimum apparent temperature (combination of 

temperature and humidity) exceeds the 85th percentile.  Note too, the dataset is limited to the 50 largest U.S. 

cities.   

Given the unusual heatwave definition and urban focus, these increasing values since 1960 presented 

in USGCRP (2023) are not informative about long term trends or the influence of GHG emissions for at 

least two reasons. First, as shown in Figures 6.3.1 and 6.3.6, the 1960s was the coldest decade and 1970s 

the second coldest decade since the 1910’s, so this starting date preconditions the time series to show 

increases. Second, post-1960 urbanization in these cities is a major factor in the rise of Tmin relative to co-

located Tmax and relative to Tmin at nearby rural stations (Karl et al. 1988, Runnals and Oke 2006, Christy 

et al. 2009, McNider et al.2012). This does not dismiss the real rise in nighttime temperatures in major U. 

S. cities and the societal impacts associated with these changes.  However, we note for a variety of reasons 

that summer Tmax (especially in rural areas) is a better metric for detecting changes in heatwaves 

influenced by changes in the background climate due, for example, to increasing GHGs (Christy et al. 
2009). For CONUS as a whole, the evidence in this section suggests GHG emissions have had little-to-no 

effect on heatwaves against the background of urbanization and natural climate variability. Irrespective of 

the ultimate cause of regional trends, heatwaves have important effects on society that must be addressed, 

as we discuss in Chapter 10. 

https://www.globalchange.gov/indicators/heat-waves
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BOX: Perils of short data records 

San Francisco provides a good case study of the limitation of using short historical samples to 
characterize natural variability of extreme events. Suppose we use a 130-year sample of daily San 

Francisco precipitation from 1895 to 2024 and we look for 3-day, 5-day, 14-day and 30-day rainfall 

records. The results are as shown in Table 6.2. 

Event Record 

(inches) 

Year 

3-day 6.94 2023 

5-day 8.55 2023 

14-day 12.62 2023 

30-day 18.93 1998 

Table 6.2: Extreme rainfall records, San Francisco, 1895-2024. 

The records all cluster in the more recent years. 2023 appears to be an exceptional year and since it 

is near the end of the sample, it might suggest that the climate has shifted into a more hazardous 
state, perhaps because of human influences. [Note “2023” indicates the event occurred in the water-

year of Aug 2022 to Jul 2023.] 

But the picture is very different if we use a sample that begins 45 years earlier, in 1850.  Table 6.3 

shows that the record-setting events all happened in the 1860s. Furthermore 2023 is now not even 

in 2nd place but falls to 3rd or 4th place. And comparing the records of the two charts shows the 

extreme precipitation events in 1862 and 1867 involved considerably more rainfall than the 1998 

and 2023 events, with 14- and 30-day totals about 50 percent higher.  

 

Event 

 

Record 

(inches) 

 

Year 

Rank of 130-yr 

extreme listed 

in Table 6.2 

3-day 8.85 1867 3 

5-day 9.80 1867 3 

14-day 19.05 1862 4 

30-day 28.25 1862 2 

Table 6.3: Extreme rainfall records, San Francisco, 1850-2024. 

The range of natural variability is made even more remarkable when paleoclimate evidence is 

examined. Porter et al. (2011) discovered that in the past 1,800 years at least six megastorms were 
more intense than the devastating 1861-62 ARkStorm that struck the region.  Evidently such extreme 

events, “unprecedented” in our 1895-2024 sample, have impacted the region about every 300 years, 

though not since 1895.   

This example illustrates the limitations of using relatively short climate periods (~130 years) to 

assess the character and range of natural variability in general and of extreme events in particular.  

Accurate representation of the full range of natural variability is necessary for any attribution 

analyses (Section 8.6). Infrastructure planners, emergency management institutions and attribution 

scientists would understand the significant mischaracterization of the magnitude of a future extreme 

if based only on the last 130 years. In this case, a single time-sample of 130 years provides an 

underestimation of the extreme value by up to 50 percent determined when adding only 45 more 

years of observations.  Compared to millennial-scale paleoclimate evidence, an even greater 

underestimation would occur.  An important lesson is that the climate can deliver great surprises on 

its own, even without human influences. 
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6.4 Extreme precipitation 

AR6 assessed that an increase in heavy precipitation has been observed in data starting in the 1950s.  

 

AR6: The frequency and intensity of heavy precipitation events have increased since the 

1950s over most land area for which observational data are sufficient for trend analysis (high 

confidence). (SPM A3.2) 

 

AR6: In North America, there is robust evidence that the magnitude and intensity of extreme 

precipitation has very likely increased since the 1950s. Both [one-day maxima] and [5-day 

maxima] have significantly increased in North America during 1950-2018. (Chapter 11, p. 

1560)  

 

The U.S. National Climate Assessments (NCA4, NCA5) have highlighted an increase in the occurrence 

of the heaviest precipitation events (defined in different ways) primarily in the eastern half of CONUS, 

especially the Northeast, when starting the analysis in either 1901 or 1958.  Interestingly, the regional 

variations indicate that the largest increases in extreme precipitation events are in the Northeast and the 

smallest in the West, a pattern counter to the changes in temperature extremes (Figure 6.3.6).   

McKitrick and Christy (2019) examined long-term and consistent station observations of extreme daily 

precipitation to test some of these NCA claims for the Southeast and West Coast using a trend model with 

a non-parametric variance estimator robust to the complex autocorrelation properties of precipitation data.  

When the time series were extended back in time (as far as 1872 in some cases) or started later (1978), there 

were no significant trends for either region.  

These findings have been updated for this report (McKitrick and Christy 2025) with similarly 

constructed observations from 29 stations on the CONUS Pacific Coast (1893ff from San Diego CA to 

Blaine WA) and 24 stations in the humid Southeast (1872ff from Austin TX to Washington DC), also 

adding 27 stations in the Northeast (1888ff from Buffalo NY to Eastport ME). The locations are shown in 

Figure 6.4.1. The stations were selected based on availability of long-term high-quality records. The regions 

are each associated with important features of extreme precipitation behavior: the Pacific coast is associated 

with landfalling atmospheric rivers for which AR6 cites evidence of increasing activity since 1948 with 

further increases expected as the world warms (AR6 8.3.2.8.2); the NCA report indicates that the Northeast 

has experienced the greatest increase in extreme events, and the Southeast is also a place noted in the NCAs 

as having increased extreme events.  

The results of applying the analysis of McKitrick and Christy (2019) were as follows for each region, 

then followed by further explanation. 

Pacific Coast heavy rainfall events 

• The average precipitation trend is statistically significant (downwards) in Astoria OR; insignificant 

elsewhere. 

• The trend in rainfall variance is positive and significant in Big Sur CA; insignificant elsewhere. 

• The trend in daily maximum precipitation is positive and significant in Aberdeen WA and Big Sur 

CA and negative and significant in Newport OR (insignificant elsewhere). 
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• Averaged over all stations in the region, none of these three trend parameters is statistically 

significant. 

The Pacific Coast receives considerable precipitation from Atmospheric River (AR) events which often 

last more than a day or two (e.g., Gershunov et al. 2017, Pan et al. 2024).  The worst series of such events 

in recent history was the so-called ARkStorm that occurred during December 1861 and January 1862; it 

dumped nearly 10 feet of rain in parts of California and submerged the entire Central Valley for weeks 

under as much as 15 feet of water (Brewer 1930, Null and Hulbert 2007). Additionally, paleoclimate 

research has found six megastorms more severe than 1861–1862 in California during the last 1800 years, 

occurring at intervals of 300 years or so (Porter et al. 2011). 

 

 

 
Figure 6.4.1: Locations of precipitation monitoring stations used in this report. 
Orange: Pacific coast. Blue: Northeast. Green: Southeast. Data from McKitrick and 
Christy (2025). 

 

 

We examine occurrences of 5-day deluges as follows. Taking the Pacific coast as an example, a 130-

year span contains 26 5-year intervals. At each location we computed the 5-day precipitation totals 

throughout the year and selected the 26 highest values across the sample. A single year might have more 

than one of the 26 heaviest. Each of those can be thought of as 1-in-5yr events. If there are no trends in 

precipitation, then the total number of these events across all stations should be evenly spread over the 

years. In Fig. 6.4.2 we show the distribution in time of these events for the Pacific coast.  The deluges 

associated with the massive 1997-98 El Niño event are readily apparent.  While erratic, as is typical of such 

precipitation metrics, there is no indication of a tendency to become more frequent over time.  
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Figure 6.4.2.  The time distribution by 5-year periods of the 26 heaviest (1-in-5 yr) occurrences for 29 
stations on the Pacific coast.     

 

 

 
Figure 6.4.3.  As in Fig. 6.4.2 but for the heaviest 30 (1-in-5yr) events for 24 stations in the humid 
Southeast from Austin TX to Washington DC in 5-year bins for 1875-2024.  
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Southeast heavy rainfall events 

• The trend in average precipitation is positive and statistically significant in Mobile AL and Quitman 

GA but insignificant elsewhere. 

• The trend in rainfall variance is positive and significant in Mobile AL but insignificant elsewhere. 

• The trend in daily maximum precipitation is positive and significant in Vicksburg MS and Norfolk 

VA but insignificant elsewhere. 

• Averaged over all stations in the region none of these three trend parameters is statistically 

significant 

Figure 6.4.3 is analogous to Figure 6.4.2 for the last 150 years in the Southeast humid zone. The 

temporal pattern of 5-day totals of the 1-in-5yr heavy events is generally unremarkable, though a cluster of 

higher values appears in 1995 to 2019.  The increase in those years is due largely to the 4 northeastern-most 

stations of Wilmington NC, Weldon NC, Washington DC, and Norfolk VA.  This confirms the pattern 

indicated in NCA4 and NCA5 -- an increasing frequency of heavy events due to a temporal clustering of 

tropical storms from eastern NC to Maine discussed below. Otherwise, the remaining 20 stations show an 

unremarkable temporal distribution of heavy events.   

 

Northeast heavy rainfall events 

• The trend in average precipitation is positive and statistically significant in 12 of 27 locations and 

also in the regional average. 

• The trend in rainfall variance is positive and significant in Portland ME, Albany NY, Buffalo NY 

and Eastport ME but insignificant elsewhere. 

• The trend in daily maximum precipitation is positive and significant in Portland ME, Gardiner ME 

and Eastport ME but insignificant elsewhere.  

• When averaged over all stations in the region, there is no statistically significant trend in either the 

precipitation variance or maximum  

Fig. 6.4.4 is analogous to Figure 6.4.2 for the last 135 years in 27 stations in the Northeast (including 

Montreal Canada).  We use 3-day totals here as this produced the largest temporal variations in time.  In 

this region, 77 percent of events occur during June to October and are dominated by incursions of 

hurricanes, tropical storms, or tropical storms that transition to extratropical systems.  According to NCA4 

and NCA5 this region experienced the largest increases in extreme events, so it merits a closer examination. 

There is a noticeable clustering of extreme events from 1995 to 2014. Howarth et al. (2019) examined 

a similar region as in Fig. 6.4.4 that includes PA and NJ and reported significant differences in various 

precipitation extremes between two 18-year periods, 1979-96 and 1997-2014. That included a 317 percent 

increase in 24-hr events exceeding 6 inches, while we find a 58 percent increase over the same years. 

However, Figure 6.4.4 shows that frequency drops sharply after 2014, returning to the long-term average 

in the subsequent 5-year intervals, again illustrating the perils of drawing conclusions from short-term 

trends in highly variable metrics.  
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Figure 6.4.4. As in Fig. 6.4.2 but for the heaviest 27 (1-in-5yr) 3-day precipitation events for 27 
Northeast stations from NY to ME, including Montreal. 

 

 

Figure 6.4.5. Average amount of precipitation falling in the 1-in-5yr events for the NE stations. 

 

The high percentage increase in the Howarth et al. sample is associated with small numbers at relatively 

few locations: there were only 6 in the first period and 25 in the second across 58 stations. Most of the 

stations did not record such an event.  If there is a region-wide increase in heavy events, it should be seen 

in the average across all stations.  Figure 6.4.5 shows the average precipitation in the 1-in-5 yr events across 
the NE. The trend is only +0.04 inches/decade.  The highest amount, 1935-39, includes the Great New 

England Hurricane of 1938, one of the rare major (Category 3 or higher) hurricanes to strike the region.  
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The results in Figs. 6.4.4 and 6.4.5 thus suggest that though there was a surge in the number of events at a 

few locations during the 1995 to 2014 interval, there was no regional pattern and the change did not persist 

beyond 2014.  

Jong et al. (2024) document the increase of tropical influences on precipitation events in the Northeast 

since 1959 and concluded “The autumn extreme precipitation trend over the Northeast U.S. is primarily 

attributed to tropical cyclone-related events since the 1990s.”  The question then becomes: “Was the 

temporal clustering of tropical systems in 1997-2014 which affected the Northeast a response to increasing 

GHGs?”  Jong et al. examined CMIP-6 model output which suggests that there will be fewer such systems 

in the 21st century but that the intensity of the rainfall events might increase.  This conjecture is not seen in 

Fig. 6.4.5 where the amount-per-event has remained steady over the 135-year period. 

There is some evidence to indicate the heaviest rainfall events might be redistributed due to the impact 

of urban infrastructure on the local weather (e.g., Pielke Sr. et al. 2011, Zhang et al. 2018, Yang et al. 2024).  

Yang et al. state “Cities that experience compact development tend to witness larger increases in extreme 

rainfall frequency over downtown than their rural surroundings, while the anomalies in extreme rainfall 

frequency diminish for cities with dispersed development.”  While this is an important insight to consider, 

the effect on the specific stations used in this analysis is unknown, or at least not detectable in Fig. 6.4.5.   

In summary, some U.S. regions show short-duration increases in extreme precipitation events, 

consistent with natural variability. But analysis of long term, nationwide historical records that considers 

the autocorrelation properties of precipitation data does not support the claim that extreme short-duration 

rainfall events are becoming more frequent or intense.  

6.5 Tornadoes  

AR6 assesses tornado trends in the U.S. as follows: 

 

[O]bservational trends in tornadoes, hail, and lightning associated with severe convective storms 

are not robustly detected due to insufficient coverage of the long-term observations. There is 

medium confidence that the mean annual number of tornadoes in the USA has remained relatively 

constant.  (Chapter 11, section 11.7.3, p. 1594) 

 

The monitoring of weak tornadoes has changed over time. The growth of rural populations and the 

increasing ability to take video with hand-held devices has led to more frequent reports of weak tornadoes 

that produce minimal damage. In contrast, strong to violent tornadoes have been observed more consistently 

over time. Note that tornado strength is measured by the damage it produces, not by the visual appearance 

of the funnel. Limited real-time observational capabilities in earlier decades did not prevent identification 

because strong to violent tornadoes leave much more damage which will be assessed later even if the 

tornado itself was not observed. Since statistics began in 1950, there has been a substantial decrease (by 

about 50%) in the number of strong to violent tornadoes as shown in Fig. 6.5.1a. 

To summarize, there is a noticeable downward trend in the number of severe tornadoes in the U.S. since 

1950. After 1990 the number of weak tornadoes in the U.S. has remained roughly constant; data before that 

are incomplete due to limited monitoring. 
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Figure 6.5.1. Annual U.S. tornado counts for (a) strong to violent tornadoes (EF3 to EF5), 
and (b) weak tornadoes (EF0 to EF2). Based upon NOAA Storms Prediction Center data, 
available at https://www.spc.noaa.gov/wcm/data/1950-2024_actual_tornadoes.csv 

 

 

6.6 Flooding 

Changes in floods were assessed as follows: 

 

AR6: The SREX assessed low confidence for observed changes in the magnitude or 

frequency of floods at the global scale. This assessment was confirmed by the AR5 report. 

The SR15 found increases in flood frequency and extreme streamflow in some regions, but 

decreases in other regions. . . [H]ydrological literature on observed flood changes is 

heterogeneous, focusing at regional and sub-regional basin scales, making it difficult to 

synthesise at the global and sometimes regional scales. (Chapter 11.5) 

AR6: [T]he seasonality of floods has changed in cold regions where snowmelt dominates the 

flow regime in response to warming (high confidence). Confidence about peak flow trends over 

past decades on the global scale is low. (Chapter 11.5) 

NCA4: Trends in extreme high values of streamflow are mixed across the United States. 

Analysis of 200 U.S. stream gauges indicates areas of both increasing and decreasing flooding 

magnitude but does not provide robust evidence that these trends are attributable to human 

influences (pp. 240-241) 
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The absence of detectable US-wide trends in flooding is consistent with the findings in Section 6.4 of 

absence of coherent changes in extreme precipitation.  

 

6.7 Droughts 

Assessments of drought trends were as follows. 

AR6: Few AR6 regions show observed increases in meteorological drought (Section 11.9, p. 

1575),  

AR6: Increasing trends in agricultural and ecological droughts have been observed on all 

continents (medium confidence), but decreases only in one AR6 region (medium confidence). 

Increasing trends in hydrological droughts have been observed in a few AR6 regions.  (Chapter 

11 Summary) 

NCA4: As a consequence of this increased precipitation, drought statistics over the entire 

CONUS have declined. (p. 233) 

NCA4: Recent droughts and associated heat waves have reached record intensity in some 

regions of the United States; however, by geographical scale and duration, the Dust Bowl era 

of the 1930s remains the benchmark drought and extreme heat event in the historical record 

(very high confidence). (p.231) 

SREX: From a paleoclimate perspective, recent droughts are not unprecedented, with severe 

‘megadroughts’ reported in the paleoclimatic record for Europe, North America, and Australia.  

(p. 170) 

 

 

Figure 6.7.1: Monthly percent of US classified as “Very Dry” 1895—2025. Data source: NOAA 
https://www.ncei.noaa.gov/access/monitoring/uspa/wet-dry/0 least squares trendline added. 

 

As shown in Figure 6.7.1, U.S. long-term data shows an insignificantly declining trend in extreme 

dryness (-0.001 percent per year) 

https://www.ncei.noaa.gov/access/monitoring/uspa/wet-dry/0
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Kogan et al. (2020) examines a 38-year high-resolution satellite-based drought measure and concludes 

that global drought has not intensified and is not connected to climate change: “it is possible to state firmly 

that global and main grain countries’ drought area and intensity trends have not been following global 

climate warming since 1980’s.”  

In summary there is no evidence of increasing meteorological drought frequency or intensity in the 

U.S. or globally over recent decades.  

 

6.8 Wildfires  

The IPCC has not provided an attribution assessment of wildfires. As shown in Figure 6.8.1, global 

wildfire activity as measured by European Space Agency shows a downward trend in the 21st century.   

 

 

 

Figure 6.8.1: Global wildfire area 2001-2018. Source: From Lizundia-Loiola et al. (2021) Figure 
12. The different coloured lines represent data products derived from different satellites and 
algorithms  

 

Global data show that wildfire coverage is constant or declining on every continent (Samborska and 

Ritchie, 2024). However there is evidence that the intensity of fires in some regions is worsening 

(Cunningham et al. 2024) and that wildfires resulted in a net loss of global forest cover over 2001-2019 

(Tyukavina et al. 2022). 

Active fire suppression since 1900 makes it difficult to establish a natural baseline for wildfire activity 

in the U.S. Paleoclimatic evidence indicates that past activity was much higher than today. Marlon et al. 

(2012) used sedimentary charcoal layers to reconstruct fire history of western U.S. for the past 1400 years 

and also fit a model to predict fire activity as a function of climatic conditions. Their results are summarized 

in Figure 6.8.2 below (from Figure 2 in their paper). There has been a growing wildfire deficit over the 20th 

century. In other words, however much fire was observed in the 20th century, it was less than what would 

have been observed in previous centuries based on the climatic conditions. Parks et al. (2025) likewise find 

that despite the recent increase in wildfire burn area in North America, a significant wildfire deficit remains 

relative to historical wildfire regimes.  
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Figure 6.8.2 Fire frequency and fire deficit in the US. The red line shows the smoothed charcoal 
record and the black dotted line shows the predicted charcoal record based climatic conditions.  
model. Source: Marlon et al. (2012) Figure 2.  

 

 

U.S. data from the National Interagency Fire Centre (NIFC) from 1926 to 2023 are shown in Figure 

6.8.3. The NIFC has removed the pre-1960 data from its current website on the grounds that measurement 

methods changed after 1960 making the comparison unreliable. Nonetheless just focusing on the post-1985 

interval the number of fires is not increasing. The area burned did increase but only until about 2007. 

Forest fires have always been a part of nature, and they can certainly create conditions that are 

inhospitable in the short term for all life, including humans. Science has confirmed the overall benefit and 

necessity of forest fires. While recent high-profile fires and seasons serve as a reminder of the potential 

destructive impact, the highest profile U.S.  forest fire remains the 1910 Big Blowup fire in the U.S. west, 

which destroyed over three million acres and eliminated entire towns like Taft, MT (Apple, 2020). The 

1910 fire reshaped the U.S. Forest Service (National Forest Foundation 2022) leading to a focus on fire 

suppression with a primary goal of defeating all forest fires (Forest History Society, 2022).  This led to the 

“10 am rule” in 1935 requiring that all fires spotted on any day had to be controlled by 10 am the following 

day (National Forest Foundation, 2022). 

While defeating all fires seemed a noble goal, questions began to arise as to whether this behavior 

“followed the science” (U.S. Forest Service, 2022). Over time the U.S. Forest Service has begun to rethink 

its goals, recognizing that new approaches such as prescribed burns, fuel elimination, and controlled 

wildfires are more appropriate (Sommer, 2016). Recent research is validating this approach and recognizing 

that more frequent smaller fires likely result in healthier forests, water ecosystems and biodiversity 

(Stephens et al., 2021).  
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Figure 6.8.3: U.S. wildfires 1926 to 2023. Source: Post-2018: National InterAgency Fire Center 
data https://www.nifc.gov/fire-information/statistics/wildfires. Pre-2017 webarchive.org (n.d.).  
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7 CHANGES IN SEA LEVEL 

 

Chapter Summary 

Since 1900, global average sea level has risen by about 8 inches. Sea level change along U.S. coasts is 

highly variable, associated with local variations in processes that contribute to sinking and also with 

ocean circulation patterns.  The largest sea level increases along U.S. coasts are Galveston, New 

Orleans, and the Chesapeake Bay regions - each of these locations is associated with substantial local 

land sinking (subsidence) unrelated to climate change.   

Extreme projections of global sea level rise are associated with an implausible extreme emissions 

scenario and inclusion of poorly understood processes associated with hypothetical ice sheet 

instabilities. In evaluatingAR6 projections to 2050 (with reference to the baseline period 1995-2014), 

almost half of the interval has elapsed by 2025, with sea level rising at a lower rate than predicted.  U.S. 

tide gauge measurements reveal no obvious acceleration beyond the historical average rate of sea level 

rise. 

 

7.1 Global sea level rise 

Global sea level rise is arguably the most important climate impact driver that is unambiguously 

associated with increasing temperatures.  At the global level, warming raises sea level through thermal 

expansion of sea water and through melting of glaciers and ice sheets. Variations in land water storage are 

another important factor.  At the regional scale, sea level change is influenced by large-scale ocean 

circulation patterns, and geologic processes and deformation from the redistribution of ice and water.  

Locally, vertical land motion from geologic processes, ground water withdrawal, and fossil fuel extraction 

are also important. 

AR6 estimates that global mean sea level increased by 7.9 (5.9–9.8) inches between 1901 and 2018, 

with the rate of sea level rise accelerating in recent decades.  At the ocean basin scale, sea levels have risen 

fastest in the Western Pacific and slowest in the Eastern Pacific over the period 1993–2018 (Fox-Kemper 

et al., 2021).  The rate of global sea level rise is estimated to be 0.12 inches/year, about the height of two 

stacked pennies (NASA, 2020). 

The observing systems for global sea level rise have advanced significantly in the satellite era, 

particularly with the advent of satellite altimeters in 1993.  Local tide gauges have provided useful data for 

the past century, and even longer for a few locations.  Following the end of the Little Ice Age in the mid-

nineteenth century, tide gauges show that the global mean sea level began rising during the period 1820–

1860, well before most anthropogenic greenhouse gas emissions. 

 

7.2 U.S. sea level rise 

Observed and predicted rates of mean global sea level rise might have little scientific relevance for 

specific locations, owing to local processes (NOAA, 2025).  Figure 7.1 shows that in Canada and Alaska 

(and also northern Washington), sea level is decreasing, owing to uplift from glacial rebound.  Most of the 

Pacific coast tide gauges show low rates of sea level rise, while largest U.S. rates are on the Gulf coast 

(Louisiana and Texas) and in the mid-Atlantic states (Chesapeake Bay region). 
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Figure 7.1.  Map of rates of relative sea level rise along the U.S. coast (NOAA, 
https://tidesandcurrents.noaa.gov/sltrends/). For reference, 3 mm = 0.12 in. 

 

Measurements of relative sea level rise from tide gauges conflate the climatologically relevant increase 

in the volume of seawater with local vertical land motion.  The latter, which varies from place to place, is 

best measured using a Global Positioning System (GPS) station located near the tide gauge.  It is driven by 

a range of processes that can be comparable to the climate signal and can locally exacerbate 

(subsidence/sinking) or mitigate (uplift) the risk of sea level rise (Wöppelmann and Marcos, 2016).  Human 

activities triggering subsidence are often significant. They include soil drainage (e.g. for urban 

development) and subsurface extraction of groundwater or hydrocarbons.  

Table 7.1 shows absolute sea-level rise (ASLR) for selected locations, determined from the sum of 

uncorrected relative sea-level rise (RSLR) as estimated from tide gauge time series (NOAA, 2025) and the 

vertical land motion (VLM) measurements (NAS, 2012; Letetrel et al., 2015; Karegar et al., 2016).  The 

absolute sea level rise for each of these locations is significantly smaller than the measured relative sea 

level rise owing to local subsidence.  More than half of the measured relative sea level rise is attributed to 

land sinking for these locations: San Francisco, Galveston, Grand Isle.  For reference, the global average 

rate of absolute sea level rise is estimated to be 0.12 inches/year. 
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Location RSLR VLM ASLR  

San Francisco, CA +0.08 -0.06 +0.02 

Galveston, TX +0.26 -0.19 +0.07 

Grand Isle, LA  +0.36 -0.28 +0.08 

St Petersburg, FL +0.12 -0.02 +0.10 

New York City, NY  +0.11 -0.05 +0.06 

Table 7.1  Absolute sea level rise (inches/year) consisting of Relative Sea Level Rise 
(RSLR) plus Vertical Land Motion (VLM) 

 

 

San Francisco Bay  

Over the past 100 years, relative sea level in the San Francisco Bay area has risen by 7.8 inches, at an 

average rate of 0.08 inches/year (Figure 7.2).  As shown in Table 7.1, San Francisco’s vertical land motion 
is -0.06 inches/year (sinking), producing a recent absolute rate of +0.02 inches/year. Portions of Treasure 

Island, San Francisco International Airport, and Foster City are sinking as fast as 0.4 inches/year (Shirzaei 

and Bürgmann, 2018).  Problems in the San Francisco Bay area, including threats to the airport, are caused 

primarily by soil compaction in landfill zones that were formerly wetlands, not by the slow creep of global 

sea level rise.  

 

 
Figure 7.2. Tide gauge measurements at San Francisco, California, obtained from NOAA -
https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?id=9414290 (downloaded 4/22/25).   

 

Galveston - Houston 

Long-term tide measurements at Galveston Pier 21 show sea level rise of 2.18 feet in the past century, 

or a rate of 0.26 inches/year (Figure 7.3). Vertical land motion (subsidence) at Galveston is estimated at  

-0.19 inches/year, yielding an absolute rate of rise of +0.07 inches/year (Table 7.1).  The U.S. Geologic 

Survey found that most of the land-surface subsidence in the Houston-Galveston region is a direct result of 

groundwater withdrawals (Kasmarek and Ramage 2017), which caused compaction of the aquifer 

sediments, mostly in the fine-grained silt and clay layers.  By 1979, as much as 10 feet of subsidence had 

occurred in Houston.  
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Figure 7.3. Tide gauge measurements Galveston Pier, TX, obtained from NOAA - 
https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?id=8771450 (downloaded 
4/22/2025).  

 

New Orleans and the Mississippi delta 

Long-term tide gauge measurements at Grand Isle, Louisiana, show that sea level has risen by slightly 

more than 3 feet over the last 100 years at an average rate of 0.36 inches/year (Figure 7.4).  Vertical land 

motion (subsidence) is estimated -0.28 inches/year.  Table 7.1 gives the absolute sea level rise as +0.08 

inches/year.  

 
Figure 7.4. Tide gauge measurements at Grand Isle, LA, obtained from NOAA - 
https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?id=8761724 (downloaded 4/22/25).  
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The issues of sea level rise and land loss in the Mississippi Delta region are complex, with geological 

subsidence and the decline in sediment transported by the Mississippi River being the dominant drivers. 

The construction of dams in the basin since the 1950s has decreased the Mississippi’s suspended sediment 

load by ~50 percent (Maloney 2018). A new subsidence map of coastal Louisiana finds the coastal region 

to be sinking at about one third of an inch per year (Neinhuis et al. 2017), associated with groundwater and 

resource withdrawal. As the city’s elevation averages one to two feet below sea level, sea level rise from 

anthropogenic warming is hardly the dominant driver of New Orleans’ problems.  

 

New York City 

New York City is particularly vulnerable to the effects of sea level rise because it is built primarily on 

islands and has 520 miles of coastline. Measurements by a tide gauge at the southern tip of Manhattan (The 

Battery) show that relative sea level has risen over 11 inches over the past century, at an average rate of 

0.11 inches/year (Figure 7.5).  But vertical land motion in the New York City area is -0.05 inches/year 

(roughly 5 inches per century), so that the absolute rate of sea level rise at The Battery is 0.06 inches/year, 

or about 55 percent of the measured relative sea level rise. 

  

 
Figure 7.5. Tide gauge measurements at The Battery, New York, obtained from NOAA - 
https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?id=8518750  (downloaded 
4/22/25).  

 

7.3 Projected sea level rise  

The concern over sea level rise is not about the roughly eight inches of global rise since 1900. Rather, 

it is about projections of accelerated rise based upon simulations of a warming climate through the 21st 

century.  

AR6 finds high agreement across published global mean sea level projections for 2050 with little 

sensitivity to emissions scenarios.  Considering only projections incorporating ice-sheet processes in whose 

quantification there is at least medium confidence, the global sea level projections for 2050, across all emissions 

scenarios, fall between 3.94 and 15.75 inches (5th–95th percentile very likely range) relative to the 1995–

2014 baseline period (Fox-Kemper et al., 2021). 
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Conversely, AR6 states there is low agreement across published global mean sea level projections for 2100, 

particularly for higher emissions scenarios.  Considering only projections representing ice sheet processes 

in whose quantification there is at least medium confidence, the AR6 global mean sea level projections 

for 2100 lie between 7.9 and 39.4 inches (5th–95th percentile very likely range) under the medium emissions 

scenario SSP2–4.5 (Fox-Kemper et al., 2021). There is deep uncertainty surrounding projections of sea level 

rise to 2100 owing to uncertainties in ice sheet instabilities, particularly for the higher emissions scenarios. 

In February 2022, NOAA issued its projections of sea level rise for various sites along the U.S. coast 

(Sweet et al., 2022).  They claim that by 2050, the sea will have risen one foot at The Battery in Manhattan 

(relative to 2020). A one-foot rise in thirty years would be more than twice the current rate and about three 

times the average rate over the past century. In that historical context, NOAA’s projection is remarkable—

as shown in Figure 7.6, it would require a dramatic acceleration beyond anything observed since the early 

20th century. But even more noteworthy is that Sweet et al. (2022) say this rise is “locked in”—it will 

happen no matter what future emissions are. We should know in a decade or so whether that prediction has 

legs. 

 

 
Figure 7.6 Rate of sea level rise at the Battery in Manhattan.  Shown 
is the historical thirty-year trailing trend, together with the allegedly 
“locked in” NOAA predicted trend for 2050. Historical data: NOAA 
Tides and Current.  
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8 UNCERTAINTIES IN CLIMATE CHANGE ATTRIBUTION 

 

Chapter summary 

“Attribution” refers to identifying the cause of some aspect of climate change, specifically with 

reference to anthropogenic activity. There is an ongoing scientific debate around attribution methods, 

particularly regarding extreme weather events. Attribution is made difficult by high natural variability, 

the relatively small expected anthropogenic signal, lack of high-quality data, and reliance on deficient 

climate models. The IPCC has long cautioned that methods to establish causality in climate science are 

inherently uncertain and ultimately depend on expert judgement. 

Substantive criticism of the main IPCC assessments of the role of CO2 in recent warming focus on 

inadequate assessment of natural climate variability, uncertainties in measurement of solar variability 

and in aerosol forcing, and problems in the statistical methods used for attribution.   

The IPCC does not make attribution claims for most climate impact drivers related to extreme events. 

Statements related to statistics of global extremes (e.g. event probability or return times, magnitude and 

frequency) are not generally considered accurate owing to data limitations and are made with low 

confidence. Attribution of individual extreme weather events is challenging due to their rarity.  

Conflicting claims about the causes of the 2021 Western North America Heatwave illustrate the perils 

of hasty attribution claims about individual extreme events.   

 

8.1 Introduction 

The Intergovernmental Panel on Climate Change (IPCC) distinguishes between detection of climate 

change and attribution of its cause. As defined by the AR6 WGI Glossary (IPCC, 2025): 

 

Detection: Detection of change is defined as the process of demonstrating that climate or a system 

affected by climate has changed in some defined statistical sense, without providing a reason for that 

change. An identified change is detected in observations if its likelihood of occurrence by chance 

due to internal variability alone is determined to be small, for example, <10%. 

Attribution: Attribution is defined as the process of evaluating the relative contributions of multiple 

causal factors to a change or event with a formal assessment of confidence. 

 

Both detection and attribution rely on statistical analysis. Detection focuses on whether changes are 

significant enough to stand out from random variation regardless of cause. Attribution involves comparison 

of observed events to model-generated counterfactuals. Since experimentation on the climate is not 

possible, attribution requires statistical inference to assess how much human activities (such as GHG 

emissions) versus natural factors (like volcanic eruptions) contribute to observed changes. Attribution 

methods assume all external and internal drivers of the system are known and represented. 

There are ongoing scientific debates around attribution methods, especially those for attributing extreme 

weather events to climate change.  The IPCC has long cautioned that methods to establish causality in 

climate science are inherently uncertain and ultimately depend on expert judgement. AR4 Working Group 

I (Hegerl et al., 2007) explained it as follows: 
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‘Attribution’ of causes of climate change is the process of establishing the most likely causes for 

the detected change with some defined level of confidence... unequivocal attribution would require 

controlled experimentation with the climate system. Since that is not possible, in practice attribution 

of anthropogenic climate change is understood to mean demonstration that a detected change is 

‘consistent with the estimated responses to the given combination of anthropogenic and natural 

forcing’ and ‘not consistent with alternative, physically plausible explanations of recent climate 

change that exclude important elements of the given combination of forcings’ (IPCC, 2001)… The 

approaches used in detection and attribution research described above cannot fully account for all 

uncertainties, and thus ultimately expert judgement is required to give a calibrated assessment of 

whether a specific cause is responsible for a given climate change. 

 

AR5 Working Group II (Cramer et al., 2014) makes the following statement:  

 

Two broad challenges to the detection and attribution of climate change impacts relate to 

observations and process understanding. On the observational side, high-quality, long-term data 

relating to natural and human systems and the multiple factors affecting them are rare. In addition, 

the detection and attribution of climate change impacts requires an understanding of the processes 

by which climate change, in conjunction with other factors, may affect the system in question. 

 

Because of the complexity of the causal chains in the climate system, investigation of these 

relationships is exceptionally challenging.   

 

8.2 Attribution methods 

The IPCC employs several attribution methods to assess the causes of observed climate changes, 

distinguishing between natural and human-induced factors. Below is a concise description of the key 

IPCC attribution methods.   

Optimal Fingerprinting uses linear regression to explain variations in observed climate data as a 

weighted sum of climate model simulations run with and without anthropogenic forcings. The data 

used in the regression model is weighted to try to minimize the influence of random noise and the 

estimation method is chosen to account for climate model error. 

Time Series Analysis exploits statistical differences between anthropogenic forcing and natural 

variability to see which dominates observed temperatures and also uses variations in the timing of 

changes to determine if causal dependence across data series can be inferred.  

Process-Based Attribution focuses on understanding the physical mechanisms behind observed 

changes.  This approach combines observations, climate models, and theoretical understanding to attribute 

changes in specific processes to forcings.  This approach is often used for regional climate phenomena, 

such as monsoon changes or polar amplification 

Extreme Event Attribution assesses the role of human influence in the likelihood of occurrence or 

intensity of extreme weather events (e.g. heat waves or droughts).  Methods include: 

• Probabilistic Event Attribution uses large ensembles of climate model simulations to compare 

observed events to model-generated counterfactuals 

• Storyline Approach examines the physical processes driving an event and evaluates how 

anthropogenic forcings might have modified those processes 
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8.3 Attribution of global warming 

Attribution statements for global warming in the three most recent IPCC Assessment reports are: 

 

AR4: Most of the observed increase in global average temperatures since the mid-20th century is 

very likely due to the observed increase in anthropogenic greenhouse gas concentrations. (IPCC 

2007) 

AR5: It is extremely likely that more than half of the observed increase in global average surface 

temperature from 1951 to 2010 was caused by the anthropogenic increase in greenhouse gas 

concentrations and other anthropogenic forcings together. The best estimate of the human- induced 

contribution to warming is similar to the observed warming over this period. (IPCC 2013) 

AR6:  The likely range of total human-caused global surface temperature increase from 1850–1900 

to 2010–2019 is 0.8°C to 1.3°C, with a best estimate of 1.07°C. It is likely that well-mixed GHGs 

contributed a warming of 1.0°C to 2.0°C, other human drivers (principally aerosols) contributed a 

cooling of 0.0°C to 0.8°C, natural drivers changed global surface temperature by –0.1°C to +0.1°C, 

and internal variability changed it by –0.2°C to +0.2°C. It is very likely that well-mixed GHGs 

were the main driver of tropospheric warming since 1979. (IPCC 2021) 

 

The AR4 and AR5 attribution statements reference the warming since the mid-20th century, the period 

when greenhouse gas emissions began increasing rapidly.  The words “most” and “more than half” are 

deliberately imprecise, potentially ranging from 51 to 99 percent of the warming – presumably this 

imprecision is to account for structural uncertainties such as natural internal variability.  The confidence 

level increases from very likely to extremely likely from AR4 to AR5.  The structure of the attribution 

statement in the AR6 is fundamentally different, referencing the warming to the period 1850-1900.  The 

AR6 attribution statement is more precise numerically, but with a lower level of confidence at “likely” –

AR6 attributes essentially all the warming to increases in greenhouse gases. The most confident statement 

from AR6 relates to the tropospheric warming since 1979, using the words “main driver” and “very likely.” 

There are three areas of substantive criticism of the IPCC’s assessment of the causes of the recent 

warming: inadequate assessment of natural climate variability, inappropriate statistical methods, and 

substantial discrepancies between models and observations. The last is discussed in Chapter 5, while this 

chapter discusses the first two factors.  All of these criticisms are relevant to the IPCC’s attribution of the 

recent warming, which also underpins extreme event attribution 

8.3.1 Natural climate variability  

AR6 states that natural external drivers since 1850-1900 have changed global surface temperature by –

0.1°C to +0.1°C, and internal variability has changed it by –0.2°C to +0.2°C – on average having essentially 

no net impact on the warming since 1850-1900. As discussed below, this minimal contribution of natural 

variability has been disputed by several publications that question the magnitudes of solar variability and 

internal variability from large-scale ocean circulations. 

 

Solar variability 

AR5 concluded that the best estimate of radiative forcing due to Total Solar Irradiance (TSI) changes 

over the period 1750–2011 was very small (0.05 W/m2, Myrhe et al., 2014). AR6 acknowledges 

substantially higher values and a much larger range of estimates of changes in TSI over the last several 

centuries, stating that the TSI between the Maunder Minimum (1645–1715) and the second half of the 

twentieth century increased by 0.7–2.7 W/m2, a range that includes both low and high variability TSI data 
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sets (Gulev, 2021).  However, the recommended forcing dataset for the CMIP6 climate model simulations 

used in AR6 for attribution studies averages two data sets with low solar variability (Matthes, 2017). 

While AR6 shows a substantially greater solar impact than does AR5, the overall impact of solar forcing 

on the climate was still assessed to be small compared to anthropogenic forcing.  However, the impact of 

solar variations on the climate is uncertain and subject to substantial debate (Lockwood, 2012; Connolly et 

al., 2021) - something that is not evident in the IPCC assessment reports.   

The variations of TSI over time remains a challenging problem. Since 1978, there have been direct 

measurements of TSI from satellites. However, the data exhibits non-negligible inconsistencies, and 

interpreting any multi-decadal trends in TSI requires comparisons of observations from overlapping 

satellites. There are several rival composite TSI datasets that disagree as to whether TSI increased or 

decreased during the period 1986–96 (the ACRIM gap; see Chapter 4). Further, the satellite record of TSI 

is used to calibrate proxy models that infer past solar variations from sunspots and cosmogenic isotope 

measurements (Velasco Herrera et al., 2015). 

There is substantial evidence for high solar activity in the second half of the 20th century (starting in 

1959) and extending into the 1990’s, before a decline in the early 21st century; this period is often termed 

the “Modern Maximum.” (Chatzistergos et al., 2023; Solanki et al., 2004; Usoskin et al., 2007). However, 

some scientists have concluded that it is not possible to be confident of any multi-decadal trend in TSI 

(Schmutz, 2021).  

This uncertainty causes some reconstructions of TSI from 1750 to have low variability (implying a very 

low impact of solar variations on global mean surface temperature) whereas datasets with high TSI 

variability can explain more than 70 percent of the temperature variability since preindustrial times 

(Scafetta, 2013; Stefani, 2021). The choice of TSI satellite record used in an analysis can therefore 

substantially influence how much climate change is attributed to human versus natural forcings. 

There is growing evidence that other aspects of solar variability, which are referred to as solar indirect 

effects, either amplify TSI forcing or are independent of TSI forcing. Scafetta et al. (2023) suggests that 

~80 percent of solar influence on climate might stem from non-TSI mechanisms. There are numerous 

candidate processes, including solar ultraviolet changes; energetic particle precipitation; atmospheric-

electric-field effect on cloud cover; cloud changes produced by solar-modulated galactic cosmic rays; large 

relative changes in the magnetic field; and the strength of the solar wind. Such solar indirect effects are not 

included in climate models, although indirect methods of estimating their impacts suggest they are 

significant. However, claims of non-TSI mechanisms influencing climate are uncertain and debated.  

 

Natural variability of large-scale ocean circulations 

Variations in global mean surface temperature are linked to recurrent large-scale variations in ocean 

circulation patterns, including the Atlantic Multidecadal Oscillation (AMO), the Pacific Decadal 

Oscillation (PDO) and the El Nino-Southern Oscillation (ENSO). These circulations influence ocean heat 

uptake and heat distribution and also influence atmospheric circulation patterns and cloud distributions. 

There is some debate as to whether these variations are strictly internal to the climate system, or whether 

this variability can have a solar/astronomical origin or can be influenced by large volcanic eruptions.  

While climate models simulate the large-scale ocean circulations and internal climate variability, most 

models have too little amplitude compared to observations at multi-decadal frequencies and phasing out-

of-sync with the observed climate (Kravtsov et al. 2024). Averaging multiple simulations effectively 

averages out the internal variations, leaving only the forced climate variability (e.g. CO2 forcing).  With 

most of the modern warming beginning in the late 1970’s, the recent 50-year warming is on the same time 

scale as the multi-decadal oscillations of the AMO and PDO.   

Here are summary statements from the AR5 and AR6 reports: 



 

86 

 

 

AR5: Decadal variability in the Pacific, associated with the PDO or IPO [Interdecadal Pacific 

Oscillation], contributes significantly to regional and global temperature trends, but the relative 

contributions of internal variability and external forcing are difficult to disentangle in CMIP5 

simulations. 

AR6: Since AR5, there has been increased understanding of the role of internal variability, such as 

ENSO, PDO, and AMO, in modulating regional climate trends. However, limitations in simulating 

the exact timing and amplitude of these modes in CMIP6 models contribute to uncertainties in 

attributing observed changes to anthropogenic forcing (high confidence). 

 

The amplitude of the peak-to-trough impact of the multi-decadal oscillations on global temperatures has 

been assessed by the IPCC AR6: “The likely range of change due to internal variability is -0.2°C to +0.2°C 

(IPCC, 2021).”  This implies a trough-to-peak change of 0.4°C. Over many centuries, any global 

temperature changes from the troughs and peaks will cancel out, with little to no net impact.   

However, with a nominal timescale of 60-80 years for oscillations such as the AMO and PDO, the 

timing of the peaks and troughs can be confused with the secular trend. This becomes very relevant for 

attributing the warming for the past 50 years, when most of the recent warming has occurred.  Even if 

climate models have the correct amplitude of the multidecadal oscillations, the timing of the peaks and 

troughs is not adequately simulated, with each model and individual ensemble simulating a different 

phasing.  Once the simulations of the ensemble members and different models are averaged, the natural 

internal variability contribution is averaged out owing to differences in phasing, effectively cancelling the 

role of natural internal variability in the attribution process. 

The time series of global surface temperature anomalies since 1850 (Figure 8.1) shows irregular 

variations of significant amplitude against the background of an overall warming trend and, after 1976, a 

pronounced difference in trends between the Northern Hemisphere and the Southern Hemisphere.  The 

period between 1905-1945 shows a strong trend of warming. The following 30 years from 1945-1976 

showed slightly declining temperatures.  The most recent warming period started in 1977. 
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Figure 8.1 Global average surface temperature anomalies 1850—2025. Top: Northern 
hemisphere. Middle: Southern hemisphere. Bottom: Global average. Source: UK Hadley Centre 
https://crudata.uea.ac.uk/cru/data/temperature/HadCRUT5.0Analysis.pdf  

 

The causes of the early 20th century warming are discussed by Hegerl et al. (2017; 2019).  The 

atmospheric CO2 concentration increased from 298 ppm in 1905 to 310 ppm in 1941, implying that CO2 

had little impact. Volcanic activity during this period was very low, and solar forcing is uncertain. Yet 

Hegerl et al. (2017) somehow inferred that 40-54 percent of this warming could be attributed to external 

forcing, with the rest associated with internal variability. Bronniman et al. (2024) focused on the causes of 

the cooling in the first decade of the 20th century in the Southern Hemisphere.  They found that the cooling 

was related to a La-Niña-like pattern in the Pacific, a cold tropical and subtropical South Atlantic, a cold 

extratropical South Pacific, and cool southern midlatitude land areas. The Southern Annular Mode was 

positive, with a strengthened Amundsen–Bellingshausen seas low, although the spread of the data products 

is considerable.  

The warming in the 1930’s and subsequent cooling during mid-century was particularly pronounced in 

the Arctic. Bokuchava and Semenov (2021) find that these variations were most likely caused by a 

combined effect of long-term natural climate variations in the North Atlantic and North Pacific with a 

contribution of the natural radiative forcing related to the reduced volcanic activity and variations of solar 

activity, as well as growing greenhouse gases concentrations. Tokinaga et al. (2017) showed that the 

combined effect of internally generated Pacific and Atlantic interdecadal variability intensified Arctic 

warming in the early 20th century. The synchronized Pacific-Atlantic warming drastically alters planetary-

scale circulations over the Northern Hemisphere; these same circulation patterns have a global influence. 

https://crudata.uea.ac.uk/cru/data/temperature/HadCRUT5.0Analysis.pdf
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The cooling period between 1945 and 1976 has been referred to as the “grand hiatus.”  Numerous 

causes have been hypothesized: natural internal variability from fluctuations associated with the Pacific 

Decadal Oscillation and Atlantic Multidecadal Oscillation; cooling from increased emissions of aerosols 

from industrial activities; increased heat uptake in the Atlantic, Southern and Equatorial Pacific Oceans.  

Thompson et al. (2010) find that that the hemispheric differences in temperature trends in the middle of the 

twentieth century stem largely from a rapid drop in Northern Hemisphere sea surface temperatures of about 

0.3 °C between about 1968 and 1972.  

The Great Pacific Climate Shift of 1976-1977 was a notable climatic event characterized by an abrupt 

change in the North Pacific Ocean's atmosphere-ocean system that interacted with global climate patterns. 

This shift is closely associated with the Pacific Decadal Oscillation (PDO) that oscillates between warm 

and cool phases over decades. The 1976 shift marked a transition from a predominantly negative (cool) 

PDO phase (1947–1976) to a positive (warm) phase (1977 through 2000), with significant implications for 

global and regional climate patterns, including the frequencies of El Nino and La Nina events. The Great 

Pacific Climate Shift coincided with the beginning of a period of accelerated global warming. When the 

Great Pacific Climate Shift is accounted for in climate attribution analyses since 1950, 40 percent or more 

of the warming in the second half of the 20th century is attributed to natural internal variability (McLean et 

al., 2009; Tung and Zhou, 2013; Chylek et al., 2016; Scafetta, 2021). 

 

8.3.2 Optimal fingerprinting 

Optimal fingerprinting is a statistical technique introduced by Allen and Tett (1999) that compares 

observed climate data to climate model simulations to identify patterns (or "fingerprints") associated with 

human or natural forcing. It involves taking a vector of observed climate changes, such as warming rates 

in locations around the world, and decomposing them into a weighted sum of “signals”, which are analogues 

to the observations generated by climate models with different types of forcings. The weights are chosen 

using a regression method called Total Least Squares (TLS). The analysis commonly uses just two signals, 

one generated by models using only anthropogenic forcings and one using only natural forcings. If the 

estimated weighting coefficient attached to a signal is significantly different from zero, then that signal is 

said to be “detected”. If it is close to 1.0, then the model generating the signal is said to be consistent with 

observations. If it is less than 1.0, then the model signal for that forcing is too strong and needs to be scaled 

down, and vice-versa. Both the observed data and the signals are weighted using a model-generated estimate 

of patterns of randomness in the climate system so as, in principle, to put maximum weight on regions 

where natural variability is minimized.  

Optimal fingerprinting is the primary tool for attribution in the research literature. While it has been 

widely used and prominently featured by the IPCC since 2001, there is very little literature examining the 

statistical properties of the results it generates. One of its inherent weaknesses is that results depend on 

assumptions about the accuracy of climate models, especially regarding their representation of natural 

variability (IPCC AR5 Ch 10.2.3).   

A series of papers by McKitrick (McKitrick 2021, 2022, 2023, 2025) has challenged the optimal 

fingerprinting method, arguing that it is inherently unreliable and that practices adopted from econometrics 

can provide more valid results. Statistical theory requires that for regression models to yield unbiased 

coefficients, a set of assumptions called the Gauss-Markov conditions must hold. McKitrick (2021) argued 

that the Allen and Tett (1999) methodology violates the Gauss-Markov conditions, leading to potentially 

biased and inconsistent fingerprinting coefficients, undermining the reliability of the method. Chen et al. 

(2023) confirmed this analysis, although they argued that the method could yield valid results under very stringent 

assumptions. McKitrick (2022) and (2023) raised a further concern that climate scientists—virtually alone among 

scientific disciplines—have used TLS to estimate anthropogenic greenhouse gas signal coefficients, despite 

its tendency to be unstable unless some strong assumptions hold that in practice are unlikely to be true. 
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Under conditions that easily arise in optimal fingerprinting, TLS estimates have a large positive bias. Thus, 

any study that used TLS for optimal fingerprinting without verifying its applicability in the specific data 

context has likely overstated the attribution.  

McKitrick (2025) presented an empirical example comparing the results of conventional optimal 

fingerprinting against methods drawn from mainstream econometrics that are known to be valid for the 

specific application of signal detection. While the IPCC optimal fingerprinting method yields an 

anthropogenic signal coefficient close to 1.0 on a global temperature data set spanning 1900 to 2010, the 

consistent method yields a coefficient around 0.4, which rises to about 0.65 on data spanning 1980 to 2010, 

implying the model response to greenhouse gases needs to be scaled down by about half to optimally match 

observations. The natural forcing signal coefficient, by contrast, is between 2.0 and 4.0, implying the 

climate model signals of natural forcing need to be scaled up two-to four-fold to match observed climate 

change. The fingerprinting coefficients estimated in McKitrick (2025), when used to scale the average 

sensitivity of the climate models used to generate the forcing signals in his data set, imply a Transient 

Climate Sensitivity of 1.4°C, which is consistent with the estimate by Lewis (2023) using a different 

estimation method and multiple independent data sets.   

 These findings indicate that the basis on which the optimal fingerprinting method has long been viewed 

as reliable is not valid. Re-examining previous results individually would be required to determine which 

findings are statistically robust.  

 

8.3.3 Time series methods 

The IPCC (AR5 WGI 10.2.2) drew attention to alternative approaches of assessing causality that 

emerged from the time series econometrics literature. These have the advantage of not depending on 

assumptions about the accuracy of climate models, but the disadvantage that they depend on difficult-to-

test assumptions about the data generating process underlying climate and forcing data. The methods, now 

referred to as climate econometrics, use the tools of unit root testing, Granger causality and cointegration 

analysis, all of which are familiar in economics and finance and which are slowly being adopted in climate 

science. Time series analysis methods hold out the possibility of determining whether anthropogenic or 

natural forcings are the primary drivers of climate change without requiring the use of climate models, 

although key questions remain unsettled (e.g. Dergiades et al., 2016, Balcombe et al., 2019, Dagsvik et al., 

2020, Razzak, 2022, Dagsvik and Moen, 2023). 

“Granger causality” modeling is a tool for determining directions of influence in data series that move 

together. It is a statistical, not a physical, concept. If knowing the current value of one variable significantly 

improves the forecast accuracy of another variable, we can infer a causal connection exists; this is called 

Granger causality. The modeling tools, called vector autoregression, measure direct impulse-response 

patterns and feedbacks. An application to the well-known Vostok ice core data revealed an error in Al 

Gore’s documentary An Inconvenient Truth. Gore showed the data and drew attention to the coherence of 

temperature and CO2 changes over a 440,000 year span, which he asserted was due to CO2 driving 

temperature changes. But temperature changes can also affect atmospheric CO2 levels. Davidson et al. 
(2015) examined the series and found that temperature Granger causes CO2 but not the reverse. In other 

words on the time scales represented in the Vostok data, the coherence in the series is primarily due to the 

influence of temperature on CO2 levels, not the feedback of CO2 levels on temperature.  

In summary, the primary statistical methods for attributing causation in climate data are optimal 

fingerprinting and time series analysis. Applications of the Allen and Tett (1999) optimal fingerprinting 

method dominate the attribution literature and have underpinned past IPCC conclusions, but results depend 

on the accuracy of climate models and the method has recently been criticized as inherently biased. Time 
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series methods do not depend on climate models but require assumptions of their own and have generated 

results that have thus far not converged on a consensus.  

 

8.4 Declining planetary albedo and recent record warmth 

A sharp recent increase in global average temperatures has raised the question of short-term drivers of 

climate. One such candidate is the fraction of absorbed solar radiation which has also increased abruptly in 

recent years. The question is whether the change is an internal feedback to warming caused by greenhouse 

gases, or whether something else increased the fraction of absorbed radiation which then caused the recent 

warming.  

The planetary albedo is the fraction of incoming solar radiation that is reflected back into space rather 

than being absorbed by the planet.  Highly reflective surfaces like cloud tops and snow and ice are most 

important in this regard.  The Earth's albedo is approximately 30 percent, meaning almost a third of the 

sunlight that reaches Earth is directly reflected back to space. A lower albedo implies more solar energy is 

absorbed by the planet to be then re-radiated as heat. Hence, other things being equal, a decline in planetary 

albedo is associated with a warming of the Earth.   

Arguably the most striking change in the Earth’s climate system during the 21st century is a significant 

reduction in planetary albedo since 2015, which has coincided with at least two years of record global 

warmth.  Figure 8.2 shows the planetary albedo variations since 2000, when there are good satellite 

observations. The 0.5 percent reduction in planetary albedo since 2015 corresponds to an increase of 1.7 

W/m2 in absorbed solar radiation averaged over the planet (Hansen and Karecha, 2025). For comparison, 

Forster et al. (2024) estimate the current forcing from the increase in atmospheric CO2compared to 

preindustrial times to be 2.33 W/m2 .  

Looking back prior to 2000 with less adequate data, Goessling et al. (2025) assessed that the planetary 

albedo was relatively low around the 1940’s and 50’s before rising industrial aerosol precursor emissions 

increased the albedo until the 1980’s. The strongest planetary albedo excursions were high-albedo episodes 

caused by volcanic eruptions, such as after the Mount Pinatubo eruption in 1991. Although uncertain, the 

2023 planetary albedo minimum might have been the lowest since at least 1940. 

Changes in surface characteristics cannot explain this decrease in planetary albedo since 2015: 

• Arctic sea ice extent has declined by about 5 percent since 1980 

(https://nsidc.org/data/seaice_index/images/s_plot_hires.png), although following 2007 there has 

been a pause in the Arctic sea ice decline (England et al., 2025) 

• Regarding Antarctic sea ice, the IPCC AR6 concludes that “There has been no significant trend in 

Antarctic sea ice area from 1979 to 2020 due to regionally opposing trends and large internal 

variability.” (Summary for Policymakers, A.1.5) 

• Northern hemispheric annual snow cover has been slowly declining since 1967, with barely 

significant trends.  The data show the Northern Hemisphere has snowier winters, accompanied by 

more rapid melt in spring and summer, see http://climate.rutgers.edu/snowcover/ and Section 5.6 

• Global greening (Chapter 2) is contributing to the decrease in planetary albedo, as forests have a 

lower albedo than open lands or snow.  However, there is some evidence that forests increase cloud 

cover (high reflectivity), which counteracts the direct albedo decrease associated with increasing 

forested area. 

 

http://climate.rutgers.edu/snowcover/
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Figure 8.2.  Earth’s albedo (reflectivity, in percent), with seasonality removed. From Hansen and 
Karecha (2025) 

 

 

Changes in surface reflectivity are contributing to a small, slow decline in planetary albedo.  However, 

these changes cannot explain the sharp decline in planetary albedo beginning in 2015.  Further, any changes 

in surface albedo are effectively damped by about a factor of three on average, primarily due to cloud 

masking (Loeb et al. 2019). Surface albedo changes have thus contributed only weakly to the recent 

planetary albedo decline, particularly when averaged annually and globally. This leaves the most likely 

explanation for the sharp albedo decline as changes in atmospheric aerosols and/or clouds.    

Aerosols are small particles in the atmosphere that reflect sunlight and can interact with cloud processes 

to make the clouds more reflective.  Aerosols have both natural origins (e.g. dust from soils, wildfires) as 

well as human origins from combustion (including fossil fuels). Regions that are greening and/or have an 

increase in rainfall might produce less dust. For anthropogenic aerosols, new ship fuel regulations aimed at 

reducing sulfur emissions were implemented in three phases, in 2010, 2015 and 2020.  Sulfate particles 

reflect solar radiation, so cleaner air means less solar radiation is reflected, which contributes to surface 

warming.  Indirect effects of sulfate aerosols include increasing the reflectivity of low-level clouds in the 

subtropics. There is controversy surrounding the importance of this change in sulfate emissions to the 

Earth’s radiation balance (Hodnebrog et al., 2024; Yuan et al., 2024), but the restriction of this effect to 

major shipping routes suggests a small global impact (Schmidt, 2024).   

Changes in clouds are the primary candidate to explain the decline in global albedo since 2015.  Two 

recent papers (Loeb et al., 2024; Goessling et al 2024) have addressed recent variations in cloud properties.  

By considering satellite and reanalysis data, Loeb et al. found that decreases in low- and mid-level clouds 

since 2015 are the primary reason for decreasing planetary albedo in the Northern hemisphere, whereas in 

the Southern hemisphere the decrease in planetary albedo is primarily due to decreases in mid-level clouds 

across all latitude zones. Goessling et al. (2024) found that cloud anomalies were mainly due to reduced 

low-level clouds.  Regions with coherent low-level cloud reductions over the past decade include the warm 

pool region around the Maritime Continent and the northern extratropical western Pacific, as well as large 

parts of the Atlantic and adjacent land regions. The reduction of global cloud cover identified in these 

analyses since 2015 is 1-2 percent.  

The issue then becomes the cause of the change in cloud cover. Two explanations have been posited 

for the declining cloud cover over the past decade: 

• Natural climate variability 
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• Changes in low cloud cover associated with warming sea surface temperatures, implying an 

emerging positive feedback to climate change (Hansen and Karecha, 2025) 

It is not easy to justify a new positive low cloud feedback that began emerging in 2015 since there is no 

obvious feedback trigger starting at that time.  However, there are numerous natural climate signals during 

this period that are associated with atmospheric circulation changes that can influence the distribution of 

clouds: 

• The 2014-2016 was one of the strongest El Niño events on record 

• A cold anomaly beginning in 2015 in the subpolar gyre of the North Atlantic reflects a shift in the 

ocean circulation pattern associated with decadal variability in the Atlantic (Frajka-Williams et al., 
2017; Arthun et al. 2021).   

• The Pacific Decadal Oscillation positive index peaked in 2016, then declined and has been in 

negative territory since late 2019 

• Eruption of the submarine Hunga-Tonga volcano in 2022 

Interannual cloud anomalies associated with the El Niño Southern Oscillation (ENSO) have a 

significant global signal and strong regional signals, especially over the tropical Indian and Pacific Oceans. 

The Hunga Tonga eruption is remarkable in its coincidence with the exceptionally low value of 

planetary albedo in 2023.  Goessling et al. (2024) found that the cloud perturbations in 2023 showed a 

different pattern from the overall pattern since 2015, with reduced cloud cover being most pronounced in 

the northern hemisphere and tropics. Regional reductions in cloud cover were most pronounced over the 

eastern Indian Ocean, over South America and extending over the eastern Pacific, as well as over northern 

North America, in the Southern Ocean around 60S, in the subtropical and eastern North Atlantic, and in 

parts of the North Pacific.  

The Hunga Tonga eruption was unusual in that it injected large amounts of water vapor into the 

stratosphere in addition to sulfate particles. Early publications focused on the impacts to stratospheric 

circulations and the direct radiative impact.  In 2025, papers are emerging that examine the indirect effects 

of Hunga Tonga on surface climate using ensemble simulations from earth system models (Bednarz et al., 

2025; Kuchar et al., 2025). These papers found statistically significant impacts on regional climates that 

were driven by circulation changes from couplings between the stratosphere and troposphere. These papers 

indicate the complex interactions between volcanic activity and climate dynamics. More research is needed 

to untangle any impacts of the Hunga Tonga eruption on the planetary albedo.  

In summary, the decline in planetary albedo and the concurrent decline in cloudiness have emphasized 

the importance of clouds and their variations to global climate variability and change.  A change of 1- 2 

percent in global cloud cover has a greater radiative impact on the climate than the direct radiative effect 

of doubling CO2. While it is difficult to untangle causes of the recent trend, the competing explanations for 

the cause of the declining cloud cover have substantial implications for assessing the Equilibrium Climate 

Sensitivity and for the attribution of the recent warming. An additional 10 years of data should help clarify 

whether this is a strong positive cloud feedback associated with warming or a temporary fluctuation driven 

by natural variability 

  

8.5 Attribution of climate impact drivers 

The IPCC (Ranasinghe et al. 2021) defines “climate impact drivers” or CIDs as “physical climate 

system conditions (e.g., means, events, extremes) that affect an element of society or ecosystems.” Hence 

CIDs are those features of the weather and climate system of primary interest in assessing the impacts of 

climate change since they potentially affect humans and the natural world. For instance, under the heading 

“Heat and Cold,” CIDs are identified as mean air temperature, extreme heat, cold spells and frost. The IPCC 
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also points out that CIDs are not necessarily harm-related: depending on the system in question they can be 

detrimental, neutral, beneficial or a combination.  

The first columns Table 12.12 in Ranasinghe et al. (2021, p. 1856), reproduced here as Table 8.1, 

summarize the AR6 assessment of whether a signal of attributable anthropogenic influence has emerged 

across all major CIDs. One of the themes of this chapter is that attribution methods used by the IPCC tend 

to overstate the anthropogenic influence and understate the role of natural variability. Nonetheless a striking 

feature of that summary table is how few CIDs exhibit an anthropogenic signal sufficient to distinguish 

them from natural variability.  

Out of the 33 weather impact categories listed, an anthropogenic signal is asserted with high confidence 

in only five, and with medium confidence in a further four. (Note that one of the CIDs is an increase in CO2 

levels, and since it is a tautology to attribute this to increased CO2 levels this CID can be ignored.) For the 

rest the IPCC does not claim to have detected anthropogenic drivers. Of the five high confidence assertions, 

two are for changes in average temperatures (air and ocean) hence are not measures of extreme weather. 

Further, two of the four medium confidence assertions are related to ocean chemistry and thus are likewise 

not related to extreme weather. The IPCC does not assert a human influence on many non-temperature 

weather features such as wind, precipitation, flooding, or drought.  

Other columns of IPCC Table 12.12 report on whether anthropogenic signals are expected to emerge 

this century under RCP8.5, the most extreme forcing scenario. We have omitted these columns for several 

reasons. First, because they refer to whether climate models project detectable signals in the observations, 

which is a very different question than our concern here: whether a signal has been detected in historical 

data. Second, as we discuss in Chapter 4, the RCP8.5 scenario is a misleading and implausible high-end 

storyline, it is not a “base case” or business-as-usual projection. Third, the ensemble of detailed models is 

acknowledged (Palmer and Stevens 2019) to be “not fit for purpose” in describing regional changes and 

“unable to represent future conditions at the degree of spatial, temporal, and probabilistic precision with 

which projections are often provided.” (Nissan et al, 2019). Even with these caveats, we note that the 

omitted columns in AR6 Table 12.12 show most weather impacts are not expected to exhibit an 

anthropogenic signal through the end of this century. 

As discussed in Chapter 6 natural variability dominates patterns of extreme weather systems and 

simplistic assertions of trend detection are frequently undermined by regional heterogeneity and trend 

reversals over time. Table 8.1 makes the related point that it is not currently possible to attribute changes 

in most extreme weather types to human influences. Taking wind as an example, the IPCC claims that an 

anthropogenic signal has not emerged in average wind speeds, severe windstorms, tropical cyclones or sand 

and dust storms, nor is one expected to emerge this century even under an extreme emissions scenario. The 

same applies to drought and fire weather.  

 

 



 

94 

 

 

 

Table 8.1: Reproduction of column 1 of Table 12.12, IPCC AR6 Working Group I report. Emergence 
of anthropogenic signal in historical period for CIDs shown. White: no signal detected. Blue and 
orange: change detected (decrease or increase) and confidence level as indicated in color legend. 
Numbers refer to specific regions and confidence levels: see original Table for notes. 
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8.6 Extreme event attribution (EEA) 

Examining the IPCC’s treatment of extreme weather and climate event attribution more broadly, AR6 

provides an ambiguous assessment of the role of anthropogenic warming that differs between its chapters.  

Chapter 11 of WG1 states (Seneviratne et al., 2021): 

 

Evidence of observed changes in extremes and their attribution to human influence (including 

greenhouse gas and aerosol emissions and land-use changes) has strengthened since AR5, in 

particular for extreme precipitation, droughts, tropical cyclones and compound extremes (including 

dry/hot events and fire weather). Some recent hot extreme events would have been extremely 

unlikely to occur without human influence on the climate system. 

 

By contrast, as noted in Section 8.5, Chapter 12 of WG1 (Table12.12) paints a different picture – 

presumably, the expert judgment of different groups of authors for the two chapters came to different 

conclusions (Ranasinghe, 2021): 

• High confidence in an increase in extreme heat events in tropical regions where observations allow 

trend estimation and in most regions in the mid-latitudes, medium confidence elsewhere 

• Medium confidence in a decrease in extreme cold events in Australia, Africa and most of northern 

South America where observations allow trend estimation 

• No evidence of emergence in the historical period of a change in river floods, heavy precipitation, 

drought, fire weather, severe windstorms, and tropical cyclones 

While the overall issue of detecting changes in extreme weather events and their attribution remains 

ambiguous, most of the activity in this area relates to the attribution of particular extreme weather events.  

The most prominent effort is World Weather Attribution (WWA; worldweatherattribution.org), an 

international research initiative for extreme event attribution that purports to analyze how climate change 

influences the likelihood and intensity of extreme weather events. Their approach is to use large ensembles 

of regional climate models to compare an event in today’s climate with one in a counterfactual pre-industrial 

climate without human influences.  

WWA has a prominent public presence in linking extreme weather to climate change, with its press 

releases attracting considerable attention in public and policy discussions. However, WWA’s extensive 

promotion of non-peer-reviewed findings, its open admission to shaping analyses to serve litigation, and its 

methodological challenges have sparked controversies, with critics questioning the robustness and 

impartiality of their conclusions (Pielke Jr. 2024). Despite these issues, WWA’s work continues to influence 

climate science and media narratives. Technical criticisms of the approach include a lack of a formal 

detection process; an implicit assumption that 100 percent of the post-industrial warming is caused by 

greenhouse gases; and a failure to adequately account for internal climate variability.   

Because EEA is relatively new, many basic methodological issues have yet to be settled in the expert 

literature. An important challenge is the lack of data. Extreme events are by definition rare. Many analyses 

of extreme event types (including the U.S. National Assessment Reports) only evaluate data since 1950 or 

1970. However, as emphasized in Chapter 6, many of the worst extreme weather and climate events in U.S. 

history occurred in or before the first half of the 20th century, including in the early 19th century.  And if 

paleoclimate reconstructions are considered, it becomes very difficult for an event to pass thresholds of 

what is expected from natural variability, particularly if a reasonably sized geographic region is considered. 
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Another challenge is defining the event under study. There is a longstanding literature in statistics and 

econometrics on the challenge of analyzing data with outliers. The issue arises because a data series 

establishes a probability distribution defining the expected range of observations. If an outlier is observed 

it might indicate that the underlying process giving rise to the data distribution has changed (which in the 

weather context would mean that a climate change has been detected) or that the underlying process has 

multiple regimes each with a different probability distribution, in which case observing an outlier simply 

means we were temporarily in a different regime, but the system itself was unchanged. If a time series 

contains only a single outlier event at the end of the series, it is not possible to determine which model is 

the correct one (Chen and Liu 1993). For instance, there might be an “ordinary” weather regime that yields 

a distribution of summer daytime highs in a particular coastal region, and a second “heatwave” regime that 

kicks in when an inland blocking event occurs, which yields a temperature distribution centered 15°C higher 

than the first one. A day with temperatures 13°C above normal would either be an extreme heat anomaly 

under the first regime or a somewhat cool event under the second, and we have no way in this case of 

knowing on statistical grounds which view is correct.  

Visser and Petersen (2012) and Sardeshmukh et al. (2015) both point out that different distributions 

might fit observed data equally well but yield very different implications about the likelihood of a specific 

weather event. Visser and Petersen argue that, in view of the deep uncertainties of extreme weather analysis, 

drawing a connection between individual events and global climate change should be avoided. Furthermore, 

the existence of an outlier at the end of a data series poses the problem that estimates of the event 

probabilities will be biased whether the outlier is included or excluded (Barlow et al., 2020). Methods to 

eliminate the bias have not yet been established, leading some experts (e.g. Miralles and Davison 2023) to 

argue that in settings in which a data series contains a single extreme event at the end, estimation of a return 

period for the extreme event will be so biased and uncertain that it should be avoided altogether.  

We provide a case study of a recent high impact extreme event in the U.S. to illustrate the challenges 

and ambiguities in attributing the frequency and intensity of extreme weather events to human-caused 

warming.  

8.6.1 Case study – 2021 Western North America heat wave 

The 2021 Western North America heat wave was an extreme event that affected much of Western 

North America in late June 2021. Surface temperature records were set in Portland, OR (116°F; previous 

record 107°F) and Seattle, WA (108 °F; previous record 103°F) (Mass et al., 2024). 

The WWA team generated international headlines with their analysis, which provided the following 

attribution statements (WWA, 2021; Philip et al., 2022):  

• Based on observations and modeling, the occurrence of this heatwave was virtually impossible 

without human-caused climate change. 

• The event is estimated to be about a one in 1000-year event in today’s climate. 

• The event would have been at least 150 times rarer without human-induced climate change. 

• This heatwave was about 2°C hotter than it would have been if it had occurred at the beginning of 

the industrial revolution (when global mean temperatures were 1.2°C cooler than today). 

But an important counter to the first claim is that other researchers concluded from historical weather 

data that while a heat wave of the magnitude observed was indeed virtually impossible without 

anthropogenic climate change, it was also virtually impossible with climate change. Bercos-Hickey (2022) 

noted “these temperatures were virtually impossible under any previously experienced meteorological 

conditions, with or without global warming.” McKinnon and Simpson (2022) stated “the most likely 

explanation remains that the weather event itself was ‘bad luck.’”  The 2023 Oregon Climate Assessment 

(Fleischman, 2023) concluded that the heat dome would have formed even without climate change and 
“There is no evidence that the highly unusual combination of weather features that drove the heat dome 
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were made more likely by climate change, and climate models do not project an increase in the frequency 

of high-pressure ridges over the Pacific Northwest” (Fleischman, 2023, p. 49).  

Mass et al. (2024) summarizes the proximate sequence of compound events leading to the heat wave.  

There was a record-breaking mid-tropospheric ridge over the Pacific Northwest, forced by a tropical 

disturbance in the western Pacific. This produced record-breaking mid-tropospheric temperatures, strong 

subsidence in the lower atmosphere, low-level easterly flow that produced downslope warming on regional 

terrain and the removal of cooler marine air, and an approaching low-level trough that enhanced downslope 

flow. The event occurred at a time of maximum solar insolation, and drier-than-normal soil moisture. Using 

a storyline approach, Mass et al. assessed that there was no trend in drought and dry soils in the Pacific 

Northwest; there is no evidence of global warming producing stronger ridges of high pressure, and no 

observed trend in heat waves or record temperatures in the region. They concluded that although 

anthropogenic warming might have contributed as much as 2°F to the magnitude of the event, there is little 

evidence of further amplification of the event from increasing greenhouse gases.  

Bercos-Hickey et al. (2022) conducted a statistical analysis of a model-based attribution study of this 

heat wave. Because the event is a far outlier and far above the bounds of Generalized Extreme Value 

distributions fitted from historical data, they concluded that estimates of return times, quantitative changes 

in event magnitude and frequency, and probability of the extreme temperatures such as provided by the 

WWA are not accurate and should be interpreted as having low confidence. They found that hindcast 

attribution methods using an ensemble of regional climate models, combined with Pearl (2009) causal 

inferences, can provide limited and conditional information about the magnitude of the human influence on 

this heatwave - they provided a more highly constrained estimate that human activities caused a ∼1.4°F–

1.8°F increase in the daily maximum temperatures. 

Zeder et al. (2023) also concluded that the methods employed by Philip et al. (2022, the WWA analysis) 

tend to overstate the rarity of extreme heat waves, leading to a biased perception of the effect of climate 

change on the heatwave event: “The tendency to overestimate the return period of observed extreme 

heatwave events may fuel the impression that seemingly impossible heatwave extremes are currently 

clustering at an unprecedented rate.” 

The 2021 Western North America heatwave was a rare and unprecedented compound weather event 

that broke century-old temperature records by as much as 9°F. While the WWA team received worldwide 

publicity for their rapid attribution claims blaming anthropogenic climate change, subsequent peer-

reviewed analyses showed that the event was caused by rare meteorological conditions that were not made 

more probable by global warming. 
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9 CLIMATE CHANGE AND U.S. AGRICULTURE  

 

Chapter summary 

There has been abundant evidence going back decades that rising CO2 levels benefit plants, including 

agricultural crops, and that CO2-induced warming will be a net benefit to U.S. agriculture. The increase 

in ambient CO2 has also boosted productivity of all major U.S. crop types. There is reason to conclude 

that on balance climate change has been and will continue to be neutral or beneficial for most U.S. 

agriculture.  

 

9.1 Econometric analyses  

Econometric analyses of the effects of climate change on agriculture have sought to integrate 

information about long term crop yield changes in response to temperature and precipitation changes under 

assumptions about adaptive behavior by farmers. One method focuses on variations in agricultural land 

values. The rationale is that if climate change is a long-term net benefit for agriculture it should be 

capitalized into higher market values for agricultural land, and vice versa. While individual crops might 

benefit from, or be harmed by, climate change, once the adaptative responses of farmers are considered the 

value of farmland represents an index of whether the changes are expected to be beneficial or not. 

Mendelsohn et al. (1994) examined the relationship between historical climatic variations on agricultural 

land values and concluded global warming would be slightly beneficial to American agriculture.  

The Mendelsohn et al. method, called Ricardian analysis after David Ricardo, the 19th century British 

economist who pioneered the study of land values, attracted subsequent criticism from authors who argued 

it failed to account for differences in land values attributable to fixed locational characteristics like soil 

quality, and non-climatic changes including nearby urbanization. Deschênes and Greenstone (2007) looked 

at agricultural profits instead of land values and reached conclusions similar to Mendelsohn et al. (1994), 

namely that past climatic variations had relatively little effect on farm profitability and that warming would 

likely yield small overall benefits for the U.S. agricultural sector. However, a subsequent exchange with 

critics led them (Deschênes and Greenstone 2012) to revise their conclusions and project potentially large 

losses in U.S. agriculture due to climate warming.  

Burke and Emerick (2016) looked at temperature variations over 1980 to 2000 and argued that farmers 

were not as able to adapt to temperature changes as the Ricardian method assumes and that climate change 

would have large negative impacts on corn and soy yields. Schlenker and Roberts (2009) similarly argued 

that yield gains to past warming would not carry over to the future and corn and soy yields would sharply 

decrease this century due to climate change.  

Two recent studies have argued that pessimistic findings such as these are not robust. Ortiz-Bobea 

(2019) argued that land values aggregate farm and non-farm influences and the latter need to be filtered 

out. He developed a data set using cash rents for agricultural activity as a measure of land value specifically 

for farming activity. Whereas the land value model implied future losses under climate warming, the same 

model estimated using cash rents did not, leading the author to conclude the pessimistic results were due to 

using an inaccurate measure of the returns to farming activity. Bareille and Chakir (2023) assembled a large 

data base on farm sale prices in France for properties that sold twice between 1996 and 2019. They could 

replicate pessimistic results showing negative effects of warming on agricultural land values using 

conventional econometric modeling. But by taking advantage of the repeat sales data, which provides 

information on site-specific changes in land prices, they found the results reversed and implied that climate 

change will be very beneficial for French agriculture. The authors concluded that, taking adaptation into 

account, a warming climate would yield positive benefits for French agriculture that were between two and 
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20 times larger than had previously been estimated. On average, with full adaptation, they concluded that 

climate changes under the medium RCP4.5 scenario could double the value of French farmland by 2100. 

A major deficiency of all these studies, however, is that they omit the role of CO2 fertilization. Climate 

change as it relates to this report is caused by GHG emissions, chiefly CO2. The econometric analyses 

referenced above focus only on temperature and precipitation changes and do not take account of the 

beneficial growth effect of the additional CO2 that drives them. As explained in Chapter 2, CO2 is a major 

driver of plant growth, so this omission biases the analysis towards underestimation of the benefits of 

climate change to agriculture.  

 

9.2 Field and laboratory studies of CO2 enrichment 

One of the ways the effect of CO2 on crop growth has been studied is through “free air enrichment 

experiments” or FACE plots, in which small sources of CO2 are placed in fields surrounding plants and the 

growth response to elevated CO2 under varying weather conditions are recorded. Ainsworth et al. (2020) 

summarizes results from about 250 such studies. They found that elevation of CO2 by 200 ppm caused an 

average 18 percent increase in crop yield in C3 plants. C4 plants exhibited benefits mainly under drought 

conditions.  

In addition to FACE plot experiments there have been thousands of laboratory experiments on the 

effects of CO2 on all kinds of plant growth. Here we review some of the results on key U.S. agricultural 

crops.  

Soybean 

Studies on the impact of elevated CO2 on Soybean (Glycine max (L.) Merr.) plants in the water-deficient 

region of Huang-Huai-Hai Plain, China, showed that elevated CO2 concentrations improved photosynthesis 

rate, water use efficiency, and growth Li (2013) under both normal conditions and drought conditions. The 

CO2Science.org website reports on 108 published experiments between 1985 and 2019 exposing soybean 

to enriched CO2 levels. Converted to a +300ppm common scale the average growth benefit was +50.9 

percent.  There were also ten studies reporting on +600 ppm CO2 enrichment, which increased 

photosynthesis by an average of 90.3%. 

Maize (corn) 

The CO2Science.org website reports on 28 published experiments between 1983 and 2018 exposing 

corn (Zea mays L.) to enriched CO2 levels. Converted to a +300ppm common scale the average growth 

benefit was +23.7 percent. Corn also benefits from increased drought tolerance under elevated CO2. An 

experimental study (Allen Jr., 2011) exposed plants to water stress conditions in sunlit controlled-

environment chambers at 360 ppm (ambient) and 720 ppm (elevated) CO2. The drought stress caused a 41 

percent loss of growth under ambient CO2 but only a 13 percent loss under elevated CO2.  

Wheat 

The CO2Science.org website reports on 92 published experiments between 1983 and 2020 exposing 

common wheat (Triticum aestivum L.) to enriched CO2 levels. Converted to a +300ppm common scale the 

average growth benefit was +67.6 percent. Blandino (2020) measured both the yield and nutritional quality 

of an “improver” hybrid wheat variety and its parents under elevated CO2 levels (+166 ppm). They reported 

a grain yield increase of +16 percent but a 7 percent decrease in grain protein levels. But they also found 

that the food quality of different wheat varietals responded differently to elevated CO2 levels, so that with 

proper varietal selection, growers could select wheat types that best take advantage of the elevated CO2.  
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Figure 9.1: U.S. average CO2 levels and yields of corn, soy and wheat all normalized 
so 1940=100. Source: Taylor and Schlenker (2021) 

 

Further evidence 

A 2021 report from the U.S. National Bureau of Economic Research (Taylor and Schlenker 2021) used 

satellite-measured observations of outdoor CO2 levels across the United States, matched to county-level 

agricultural output data and other economic variables. After controlling for the effects of weather, pollution 

and technology the authors concluded that CO2 emissions had boosted U.S. crop production since 1940 by 

50 to 80 percent, attributing much larger gains than had previously been estimated using FACE 

experiments. They found that every ppm of increase in CO2 concentration boosts corn yields by 0.5 percent, 

soybeans by 0.6 percent, and wheat by 0.8 percent.  

Beyond growth benefits, extra CO2 boosts plant resilience to dryness. See discussion in Section 2.1.3. 

9.3 Crop modeling meta-analyses 

Notwithstanding the abundant evidence for the direct benefits of CO2 and of CO2-induced warming on 

crop growth, in 2023 the U.S. Environmental Protection Agency (EPA 2023) boosted its estimate of the 

Social Cost of Carbon (SCC) about five-fold based largely on a very pessimistic 2017 estimate of global 

agricultural damages from climate warming (Moore et al., 2017). One of the two damage models used by 

the EPA attributed nearly half of the 2030 SCC to projected global agricultural damages based on the Moore 

et al. (2017) analysis. This study was a meta-analysis of crop model studies simulating yield changes for 

agricultural crops under various climate warming scenarios. Moore et al. projected declining global crop 

yields for all crop types in all regions due to warming.  
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Figure 9.2 Crop yields under CO2-induced climate warming. Blue: as published in Moore et 
al. (2017). Green: after including omitted data. Source: McKitrick (2025).  

 

McKitrick (2025) re-examined the Moore et al. database and found that, while it claimed to cover 1,722 

studies, only half the entries (N=862) had complete records, so that the sample available for regression 

analysis was much smaller than both studies indicated. McKitrick noted that the records most commonly 

missing were the changes in ambient CO2 and found that in many cases these could be recovered from the 

underlying studies or the original climate scenario tables, thereby increasing the usable sample size by 40 

percent. The crop yield projections incorporating the newly available data changed considerably. As shown 

in Figure 9.2, whereas the partial data set implied warming would decrease yield (blue lines), the complete 

data set implied constant or increase global yields, even out to 5°C warming (green lines).  

 

9.4 CO2 fertilization and nutrient loss 

Evidence has shown that CO2-induced biomass gains are sometimes accompanied by reductions in the 

concentrations of protein and other key nutrients such as iron and zinc (Ebi et al. 2021). Some experiments 

have shown that the rising temperatures expected to accompany higher CO2 levels will offset this loss 

(Köhler et al. 2019) although the evidence for this is mixed, as is the evidence that nutrient dilution observed 

to date is entirely attributable to higher CO2 (Ziska 2022). If nutrient dilution does occur under rising CO2 

levels, there are several adaptive strategies that could be pursued.  

First, selective breeding to raise micronutrient content is already established (Saltzman et al. 2017) and 

has proven to be a cost-effective agronomic strategy (Ebi et al. 2021). Strategies can include both 

conventional breeding and genetically-modified organisms. An example of the latter is Golden Rice, which 



 

108 

 

contains elevated levels of beta-carotene to boost biosynthesis of vitamin A in the human body. Optimal 

strategies will be location-specific because they vary by crop, climate and soil type (Ebi et al. 2021). 

Second, fortification of food products with micronutrients is already routine. Folic acid (a B vitamin) is 

added to flour and many other foods; iodine is added to table salt, most commercial breakfast cereals are 

fortified with iron and numerous vitamins, etc. Third, dietary supplements in the form of multivitamin 

tablets are inexpensive, widely-available and routinely consumed.  

One concern about reliance on adaptive strategies is whether they are feasible in low-income countries. 

Micronutrient deficiency is already a problem in the developing world and dietary supplements have proven 

to be an effective low-cost response (Ebi et al. 2021). It should also be noted the IPCC emission scenarios 

that generate high levels of warming also involve strong income growth. The SSP scenarios3 assume that, 

compared to 2005 levels, global per capita income will double by 2100 in the lowest growth case (SSP3), 

and in the highest emission case (SSP5) global per-capita income will grow nearly 16-fold. In that scenario 

even the poorest regions (Africa and the Middle East) end up with a per capita income of about US$126,000, 

70 percent higher than current U.S. per capita income (about US$75,000). Consequently the same scenarios 

in which CO2 levels increase the most are also those in which global poverty is largely eliminated, in which 

case all countries would be able to afford dietary supplements as necessary to address micronutrient 

deficiencies, if they arise and cannot be addressed using on-farm agricultural strategies. 

In summary, there is abundant evidence going back decades that rising CO2 levels benefit plants, 

including agricultural crops, and that CO2-induced warming will be a net benefit to U.S. agriculture. To the 

extent nutrient dilution occurs there are mitigating strategies available that will need to be researched and 

adapted to local conditions.  
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10 MANAGING RISKS OF EXTREME WEATHER 

 

Chapter summary 

Trends in losses from extreme weather and climate events are dominated by population increases and 

economic growth. Technological advances such as improved weather forecasting and early warning 

systems have substantially reduced losses from extreme weather events. Better building codes, flood 

defenses, and disaster response mechanisms have lowered economic losses relative to GDP. The U.S. 

economy's expansion has diluted the relative impact of disaster costs, as seen in the comparison of 

historical and modern GDP percentages. Heat-related mortality risk has dropped substantially due to 

adaptive measures including the adoption of air conditioning, which relies on the availability of 

affordable energy. U.S. mortality risks even under extreme warming scenarios are not projected to 

increase if people are able to undertake adaptive responses. 

 

10.1 Socioeconomic context 

Risks from human-caused climate change are affected by natural weather and climate variability and 

are dominated by the exposure of wealth in coastal and other disaster-prone regions and vulnerabilities of 

poorer populations. The evolution of climate risk in the U.S. has been dominated by societal factors, rather 

than by changes to the actual weather and climate hazards.  Deaths from weather disasters have decreased 

substantially since 1900, even as U.S. population grew from 76 million in 1900 to over 331 million in 2020 

(Goklany 2011). For example, the Galveston hurricane killed over 8,000 people in 1900 (0.01 percent of 

the U.S. population), whereas the worst recent disaster, Hurricane Katrina in 2005, killed 1800 people (or 

0.0006 percent of the U.S. population) (NOAA National Hurricane Center 2025; U.S. Census Bureau 2025).   

Technological advances have substantially reduced losses from extreme weather events.  Early warning 

systems, satellite monitoring, and improved weather forecasting have reduced deaths, although exact 

numbers are hard to quantify (Deryugina and Hsiang 2023).  U.S. weather forecasting has been estimated 

to reduce losses from weather events with an annualized benefit of $31.5B, protecting lives, property, and 

supporting agriculture and transportation (NRC 2010).  Improved hurricane forecasts have reduced pre- 

and post-landfall spending, with annual per hurricane cost reductions estimated at $5B (Molina and Rudik 

2024). 

Infrastructure improvements have contributed to substantial reductions in losses from extreme weather 

events.  Building codes, such as those implemented in Florida after Hurricane Andrew (1992), have reduced 

losses by ensuring structures can withstand high winds and floods. Homes built after 2002 showed minimal 

damage during Hurricane Michael (2018), unlike older homes (FEMA 2020).  Sea walls, like the Galveston 

Seawall, protect against wave action and storm surge.  The New Orleans Hurricane and Storm Damage 

Risk Reduction System successfully mitigated storm surge during Hurricane Isaac (2012) (Battelle 

Memorial Institute 2013).  Inland dams in the U.S. help control flooding by storing excess water during 

heavy rains.  It is estimated that the Tennessee Valley Authority (TVA) dams prevent about $309M in 

annual flood damage in the TVA region and along the Ohio and Mississippi Rivers (TVA, 2025). During 

Hurricane Helene (2024), TVA’s strategies prevented approximately $406M in potential damages (APPA 

2024).  
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10.2 Data challenges 

Since 1980, NOAA has provided a count of annual U.S. weather-related disasters that it estimates to 

have exceeded $1 Billion (inflation adjusted), showing a substantial increase starting in 2008. NOAA and 

other government officials have cited the upward trend in the Billion Dollar Disaster series as evidence that 

climate change is making extreme weather worse (Pielke Jr., 2024).  But over time, population and wealth 

have increased dramatically in the U.S., so when an extreme weather or climate event occurs, there is more 

damage even if there is no underlying trend in the frequency or intensity of extreme weather.  Pielke Jr. 

(2024) demonstrates that losses per weather disaster as a proportion of GDP have decreased by about 80 

percent since 1980, as shown in Figure 10.1. Pielke Jr. (2024) also argued that in addition to relying on 

opaque data sources and unreported adjustments, NOAA failed to normalize its Billion Dollar Disaster data 

series properly for changes in population exposure and wealth. In May 2025 NOAA announced it has 

withdrawn the Billion Dollar Disaster product from publication (Pielke Jr., 2025).   

 

 

 
Figure 10.1: Losses per disaster as a % of Gross Domestic Product in NOAA’s billion-dollar 
disaster dataset (the version downloaded in July 2023), 1980 to 2022. Source: (Pielke, Jr. 2024)  

 

In summary, trends in losses from extreme weather and climate events are dominated by population 

increases and economic growth. Technological advances such as improved weather forecasting and early 

warning systems have substantially reduced losses from extreme weather events.  Better building codes, 

flood defenses, and disaster response mechanisms have lowered economic losses relative to GDP.  Finally, 

the U.S. economy's expansion has diluted the relative impact of disaster costs, as seen in the comparison of 

historical and modern GDP percentages. 

 

10.3 Mortality from temperature extremes 

10.3.1 Heat and cold risks 

Changes in temperature extremes are among the most certain impacts expected in a warming world. It 

stands to reason that extreme heat events would likely become more frequent while extreme cold events 

would become less frequent.  This pattern is evident in the historical period, though not in the continental 

U.S. (Chapter 6), and is expected to continue with further warming.   
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Mortality during heat extremes is typically caused by heat stroke and heat exhaustion, while mortality 

during cold extremes typically stems from hypothermia and heart strain.  Global mortality is substantially 

greater for cold conditions than for hot conditions (Zhao et al 2021, Ritchie 2024).  Unlike with heat-related 

mortality, cold-weather risks set in even at moderately cold conditions (Gasparini et al. 2015, Lee and 

Dessler 2023). The U.S. EPA (citing data from the Centers for Disease Control) reports that on average 

over 1999 to 2015 there were 2.2 deaths per million Americans for which cold was listed as the main 

underlying cause and an additional 2.4 deaths per million for which cold was listed as a contributing factor 

(EPA 2025). By contrast there were 1.3 deaths per million for which heat was the main cause and an 

additional 0.8 per million for which it was a contributor. By this metric cold accounts for approximately 

double the weather-related deaths as does heat.  

Epidemiological methods that consider correlational evidence, not just death certificate reports, indicate 

the cold/warm ratio might be much higher. A 13-country study of 74 million deaths from 1985 to 2012 

estimated that, on average, 7.7 percent of deaths were attributable to sub-optimal temperatures, of which 

7.4 percent were attributable to cold and only 0.4 percent were attributable to heat (Gasparini et al. 2015). 

In other words, cold weather killed 18.5 times as many people as did hot weather.  

Figure 10.2 shows the distribution of results from Gasparini et al. (2015) by country. For the United 

States the fraction of deaths attributable to temperature was 5.9 percent, of which 5.5 percent was due to 

cold, thus cold weather killed 14 times as many people as hot weather.  

 

Figure 10.2. Mortality attributable to extreme and moderate cold and heat by country. Source: 
reproduced from Gasparini et al. (2015).  

 

 

There is strong evidence that people adapt to weather risks. Lee and Dessler (2023) reported that 86 

percent of temperature-related deaths across 40 cities in the U.S. were due to cold-related mortality, and 

that due to adaptation the relative risk of death declined in hot and cold cities alike as seasonal temperatures 

increased. Allen and Sheridan (2018) found that short, early-season cold events were 2 to 5 times deadlier 

than hot events, but the mortality risk of both cold and hot extremes drops to nearly zero if the events occur 

late in the season.  

Davis et al. (2003) examined heat-related mortality in 28 U.S. cities from the 1960s to the end of the 

1990s and found that heat-related mortality declined by three-quarters over the sample period. Bobb et al. 

(2014) examined mortality data for 106 million people in over 100 cities U.S. cities and found a 60 percent 

decline in average heat-related mortality over the period 1987—2005, from 51 per thousand deaths to 19. 

They furthermore found that the greatest drop was among seniors over the age of 75. In a study of 42 million 
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deaths in 211 U.S. cities from 1962 to 2006. Nordio et al. (2015) found a more than 90 percent decline in 

the risk of mortality from excess heat. 

In the context of large declines in heat-related mortality, rising temperatures are associated with a net 

saving of lives since they reduce mortality from cold events. AR6 Working Group 2 Chapter 16.2.3.5 

(O’Neill et al. 2022) acknowledges that heat-related mortality risk is declining over time: 

 

Heat-attributable mortality fractions have declined over time in most countries owing to general 

improvements in health care systems, increasing prevalence of residential air conditioning, and 

behavioral changes. These factors, which determine the susceptibility of the population to heat, 

have predominated over the influence of temperature change. 

 

Yet the IPCC misrepresents the overall situation in its AR6 Synthesis report. Section A.2.5 of that document 

states: “In all regions increases in extreme heat events have resulted in human mortality and morbidity (very 

high confidence).”  But it is silent on the larger decline of deaths during extreme cold events. 

The observed decline in U.S. heat-related mortality has been specifically attributed to adaptation. Wang 

et al. (2018) exploited the spatial variability of heatwave-related mortality across 209 U.S. cities from 1962 

to 2006. While simple correlation appeared to imply an increase in mortality risk during heatwaves, 

accounting for adaptation to heatwave intensity caused the effect to fall to near zero and become statistically 

insignificant. They used the results of their epidemiological model to project heat-related mortality out to 

2050 under four RCP warming scenarios (including RCP8.5) with and without adaptive behavior. 

Assuming people continue to adapt to the heatwave risks in the regions in which they live. Wang et al. 
(2018) project not only no increase in heat-related mortality, but an overall mortality decrease for the U.S. 

They conclude that  

 

Ignoring adaptation would result in a substantial overestimate of future mortality related to heat 

waves… Accounting for adaptation, the overall heat-related mortality by 2050 would not change 

substantially over time compared to 2006. 

 

10.3.2 Mortality risks and energy costs 

A 2016 study of U.S. long term mortality risks associated with temperature variations (Barreca et al. 

2016) showed that increases in mortality across the U.S. are associated with both cold weather and hot 

weather. But over time, the introduction of electricity and the adoption of central heating and air 

conditioning (AC) dramatically reduced both risks, especially those associated with hot weather. Prior to 

1960 a day above 90°F (32°C) added 2.2 percent to the average mortality risk rate, but after 1960 the same 

weather added only 0.3 percent to mortality risk, an 85 percent reduction. Prior to 1960 temperatures below 

39°F (4°C) added about 1 percent to mortality risk but after 1960 the same weather only added about half 

that amount. Adaptation through conventional household improvements dramatically reduced public 

vulnerability to weather extremes. The entire reduction in hot weather mortality was attributable to 

widespread adoption of indoor AC, which depended on the availability of reliable and affordable electricity.   

The corollary of this finding is that the use of heating and cooling systems depends on energy being 

affordable. Doremus et al. (2022) showed that wealthy and poor households in the U.S. adjust their energy 

expenditures at similar rates in response to moderate temperature swings, but not in response to extreme 

temperature swings. When temperatures swing to very cold levels (< 5°C) energy spending in high-income 
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households rises by 1.2 percent but in low-income households by only 0.5 percent. On very hot days 

(>30°C) electricity spending in high-income households rises by 0.5 percent but does not change at all in 

low-income households. The latter result is observed even in subsamples where all households have AC. 

Cong et al. (2022) report similar findings for a sample of households in Arizona. The implication is that 

even with widespread adoption of home heating and cooling systems, inability to afford energy leaves low-

income households exposed to weather extremes. 
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11 CLIMATE CHANGE, THE ECONOMY, AND THE SOCIAL COST OF 

CARBON 

 

Chapter summary 

Economists have long considered climate a relatively unimportant factor in economic growth, a view 

echoed by the IPCC itself in AR5. Mainstream climate economics has recognized that CO2-induced 

warming might have some negative economic effects, but they are too small to justify aggressive 

abatement policy and that trying to “stop” or cap global warming even at levels well above the Paris 

target would be worse than doing nothing.  An influential study in 2012 suggested that global warming 

would harm growth in poor countries, but the finding has subsequently been found not to be robust. 

Studies that take full account of modeling uncertainties either find no evidence of a negative effect on 

global growth from CO2 emissions or find poor countries as likely to benefit as rich countries. 

Social Cost of Carbon (SCC) estimates are highly uncertain due to unknowns in future economic 

growth, socioeconomic pathways, discount rates, climate damages, and system responses. The SCC is 

not intrinsically informative as to the economic or societal impacts of climate change. It provides an 

index connecting large networks of assumptions about the climate and the economy to a dollar value. 

Some assumptions yield a high SCC and others yield a low or negative SCC (i.e. a social benefit of 

emissions). The evidence for or against the underlying assumptions needs to be established 

independently; the resulting SCC adds no additional information about the validity of those 

assumptions. Consideration of potential tipping points does not justify major revisions to SCC 

estimates.  

 

11.1 Climate change and economic growth 

11.1.1 Overview 

It has long been noted that economies tend to do poorly in very cold and very hot regions, with the 

optimum somewhere in between (Nordhaus, 2006). This implies that warming will tend to be harmful in 

hot regions but beneficial in cool ones. Temperature-sensitive economic activity migrates, whenever 

possible, to where it is best suited, and society adapts to the local climate. Based in part on these 

observations, in 1992 Thomas Schelling, then President of the American Economic Association, argued 

that any effects of climate change on U.S. economic activity would be small relative to the many other 

changes that would happen (Schelling 1992). 

 

… Manufacturing rarely depends on climate, and where temperature and humidity used to make a 

difference, air conditioning has intervened. When Toyota chooses among Ohio, Alabama, and 

Southern California for locating an automobile assembly, geographical considerations are 

important, but not because of climate... Finance is little affected by climate; similarly for health 

care, or education, or broadcasting. Transportation can be affected, but improvements in all-

weather landing and take-off in the last 30 years are greater than any differences that climate makes. 

If the average effect is a warming, iced waterways and snow removal may decline in importance. 
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Construction is affected, mainly by cold, and if the average effect is in the direction of warming, 

construction may benefit slightly. 

It is really agriculture that is affected. But even if agricultural productivity declined by a third over 

the next half century, the per capita GNP we might have achieved by 2050 we would achieve only 

in 2051. … 

I conclude that in the United States, and probably Japan, Western Europe, and other developed 

countries, the impact on economic output will be negligible and unlikely to be noticed.  

 

Thirty years later virtually the identical point was made by the IPCC itself in the Fifth Assessment Report 

(Arent et al. 2014, emphasis added)  

 

For most economic sectors, the impact of climate change will be small relative to the impacts 

of other drivers. Changes in population, age, income, technology, relative prices, lifestyle, 

regulation, governance, and many other aspects of socioeconomic development will have an impact 

on the supply and demand of economic goods and services that is large relative to the impact of 

climate change. 

 

Evidence since AR5 does not change this assessment. Mohaddes et al. (2023) found that warm weather 

shocks have small negative effects on U.S. state-level output but not income, while cold weather shocks 

negatively affect both and the impacts are about four times larger, implying a shift to warmer conditions 

would, if anything, yield a net economic benefit for the U.S. 

These statements are validated by experience. Since 1900, the average global surface temperature 

anomaly warmed 1.3°C, about as much as the IPCC predicts will occur in the next century under a moderate 

emissions scenario. But even as the globe warmed and the population quintupled, humanity prospered as 

never before. For example, global average lifespan went from thirty-two years to seventy-two years, 

economic activity per capita grew by a factor of seven, and the death rate from extreme weather events 

plummeted by a factor of fifty. Climate change damage projections typically refer to reductions in how 

much life will improve for humanity, they don’t state that it will get worse in an absolute sense (O’Neill 

2023).  

While extreme weather events are costly, in all modern economies they are becoming steadily less and 

less important (Formetta and Feyen, 2019). Since 1990 weather-related disaster losses have declined as a 

proportion of global GDP (Pielke Jr , 2018, 2020) as have mortality risks (Formetta and Feyen, 2019). 

While economic weather-related insurance payouts are rising, this is fully explained by the growth in the 

size of the economy and the value of the insured asset stock. Past increases in episodes extreme weather 

have not had a significant effect (positive or negative) on the market value of insurance firms (Hu and 

McKitrick, 2015). Nor have past extreme weather events had a significant effect on U.S. banks’ 

performance (Blickle et al., 2021); warming has even been shown to be beneficial for the finance and 

insurance sector (Mohaddes et al. 2023). Figure 11.1 below is illustrative. For these reasons, economists 

have long been reluctant to endorse attempts to “stop” climate change or even aggressively reduce GHG 

emissions because the costs would not be worth it. As one critic of the economics of climate policy put it 

(Storm 2017): 

 

Mainstream climate economics takes global warming seriously, but perplexingly concludes that the 

optimal economic policy is to almost do nothing about it…  The contrast is striking. While climate 

science is sending out loud-and-clear messages that fossil-fuel disinvestment must start now, letting 
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go of coal and oil and diverting resources into renewable energy technology systems, to keep 

warming below the 2°C limit (IPCC 2014), mainstream climate economics claims that overly 

ambitious climate targets will unnecessarily hurt the economy and immediate de-carbonization is 

too expensive. Most climate economists thus recommend humanity to just wait-and-see. 

 

 

 

Figure 11.1 Global weather losses as a fraction of GDP. Source: Pielke Jr. (2023) 

 

The mainstream economics position on the climate policy question is best represented by the findings 

over the past three decades from Integrated Assessment Models (IAMs) of climate change policy, for which 

Yale economist William Nordhaus was awarded the 2018 Nobel Memorial Prize in economics. IAMs 

combine economic, climate, and social data into a unified framework for simulating climate damages and 

evaluating the optimal policy response (Resources for the Future, 2025).  Nordhaus’ work has generally 

supported modest global climate policy, with aggressive measures largely deferred to later in the century. 

Nordhaus developed the so-called Dynamic Integrated Model of the Climate and Economy model, or DICE, 

in the early 1990s (Nordhaus, 1993) to study the interaction between climate change, climate policy, and 

global economic growth over long times. DICE assumes global emission control can be coordinated at no 

cost and asks what the optimal policy target should be. The climate component of the DICE model is based 

on simplified climatological modeling. The version of DICE at the time of Nordhaus’ Nobel Prize award 

was described in Nordhaus (2018); it had a climate sensitivity parameter of 3.1°C for CO2 doubling, 

consistent with the best estimate in IPCC reports (3.0°C).  

The baseline (no policy) scenario incurs only $0.4T in global abatement costs and leads to $134.2T 

(trillion dollars) in global climate damages for a total cost of $134.6T. The climate model component of 

DICE projects 4.1°C warming by 2100 relative to preindustrial temperatures. Note that this is a higher 

estimate of warming than many IPCC climate models.  

The Optimal Policy scenario barely deviates from the business-as-usual path. It aims for +3.5°C 

warming, in other words we modestly scale back fossil fuel use and otherwise just live with almost all the 

warming. This suggests that most CO2 emissions are less harmful than the policies that would be necessary 

to abate them. Trying to prevent warming causes costs quickly to outstrip the benefits. Pursuing a goal of 

capping warming at 2.5°C creates total costs of $177.8T, which is $43.2T worse than doing nothing at all. 

Nordhaus didn’t evaluate trying to reach a Paris-type target of 1.5°C warming but it would be even more 

costly.  
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A subsequent edition of DICE includes higher assumed damages from warming which, not surprisingly 

leads to more aggressive policy recommendations, as explained in the section below on the Social Cost of 

Carbon. 

 

11.1.2 Empirical analysis of climate change and economic growth 

Many other studies have used econometric methods applied to historical data, instead of IAMs, to study 

the potential impact of climate change on economic growth. Dell et al. (2012, herein DJO12) was an 

influential study that used a multi-country panel of national-level data spanning 1950 to 2005, in which 

they matched climate and economic data by averaging temperature from the local grid cell level up to the 

national level using population weights. They found that warming yields an insignificant positive effect on 

income growth in rich countries but a significant negative effect in poor countries. Moore and Diaz (2015) 

modified the DICE model to take that finding into account and concluded that it implied a dramatically 

higher Social Cost of Carbon due to the compounding effects of income loss over time.  

A large subsequent literature has debated the robustness of the DJO12 findings. Burke et al. (2015) 

analyzed a global panel with temperatures averaged up to the national level and found a negative effect on 

growth from warming in rich and poor countries alike when the national average temperature is above 13°C. 

Zhao et al. (2018) used the G-Econ data set of Nordhaus (2006), which breaks economic activity down to 

the grid cell level, replicated DJO12-type results on the same subset of countries as used in DJO12 but then 

showed that on the full global sample warming increases growth in rich countries and poor countries alike, 

though the positive effect in the latter group is confined to where local temperatures are below about 16°C. 

Greβer et al. (2021) developed a regional economic data set for 1,542 sub-national regions around the world 

between 2005 and 2015 and found temperature had no effect on growth. Yang et al. (2023) updated the 

DJO12 data set and applied an estimator robust to mixed sample frequencies, finding that while temperature 

shocks exerted a temporary effect on income levels, they did not have a significant lasting effect on growth 

rates.  

Newell et al. (2021) noted that there is no underlying theory to guide econometric model specification 

in this literature. Taking into account the arbitrary choices of which explanatory variables to include, they 

identified over 800 possible model specifications. Using the Burke et al. (2015) data they used an estimation 

method that accounts for model uncertainty and found that the model form preferred by Burke et al. (2015), 

which implied negative effects of warming on growth even in rich countries, is explicitly excluded by the 

optimal model selection algorithm. Overall, they could not detect a temperature effect on GDP or GDP 

growth, and they estimated the 95 percent confidence interval for the impact on global growth as of 2100 

even under the exaggerated RCP8.5 warming scenario spans −86 percent to +388 percent. In other words 

the net effect is likely positive but too uncertain to distinguish from zero.  

Barker (2023) criticized the DJO12 assumption that countries can be grouped into fixed “poor” and 

“rich” categories based on their incomes many decades ago. He noted that many countries were once poor 

but became rich over time, and if this is considered the original temperature effects reported by Dell et al. 

became small and insignificant.  

Berg et al. (2023) argued that countries shouldn’t be grouped into large Rich/Poor categories because 

they are too heterogeneous. They instead estimated country-specific temperature response coefficients then 

grouped countries with similar response coefficients into small panels. They separately estimated responses 

to global and idiosyncratic local temperature shocks to better identify the climate signal in weather data. 

Overall, they found countries experiencing negative effects of warming on growth outnumbered those 

experiencing positive effects, but only temporarily: eventually the effects reverse such that about twice as 

many countries experience a net positive growth effect. They also found global (as opposed to local) 
temperature changes are much more likely to benefit growth in poor countries than rich ones. In a simulation 

to 2100, even using the extreme RCP8.5 scenario, they computed the average global GDP loss would be 
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only 1.9 percent compared to a scenario with no warming. That is, instead of the economy growing 400 

percent it would grow 392%. The implication of Nordhaus’ earlier analysis is that trying to prevent the 

warming would lead to far less than 392 percent growth.  

To summarize, economists consider climate a relatively unimportant factor in economic growth, a view 

echoed by the IPCC itself in the Fifth Assessment Report. Mainstream climate economics has recognized 

that CO2-induced warming might have some negative economic effects but they are too small to justify 

aggressive abatement policy and trying to “stop” or cap global warming even at levels well above the Paris 

target would be worse than doing nothing. An influential study in 2012 suggested that global warming 

would harm growth in poor countries but the finding has subsequently been found not to be robust (Tol 

2024). Studies that take full account of modeling uncertainties either find no evidence of a negative effect 

on global growth from CO2 emissions or find poor countries as likely to benefit from it as rich countries. 

 

 

Figure 11.2: Decline in U.S. GDP per degree of warming. Source: CEA-OMB (2023) 

 

The expectation that significant global warming would have a small impact on the U.S. economy was 

acknowledged quietly by the Biden Administration, even as the President was proclaiming a climate 

emergency.  Figure 11.2, from a 2023 CEA-OMB report, shows the expected decrement in U.S. GDP as a 

function of temperature rise.  The colored lines show the results of a dozen peer-reviewed published studies 

while the solid black line is their average.  The figure could be summarized as “a few percent impact for a 

few degrees of warming”.  Given that the economy’s annual growth rate is expected to be 1-2 percent, the 

impact of a warming globe on the U.S. GDP is indeed negligible. 

 

11.2 Models of the Social Cost of Carbon 

The Social Cost of Carbon (SCC) is a tool for quantifying the economic impact of carbon dioxide 

emissions, helping policymakers weigh the costs and benefits of climate policies. It estimates the damage 

caused by emitting one additional ton of CO₂, expressed in dollars. More formally, the SCC is the 

discounted present value of the current and future marginal loss of economic welfare due to an additional 

ton of CO2 entering the atmosphere.  
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11.2.1 Estimating the SCC 

Although the literature refers to “estimates” of the SCC, it is not estimated in the way other economic 

statistics are estimated. For instance, data on market transactions including prices and quantities can be 

used to estimate the current inflation rate or the growth rate of per capita real Gross Domestic Product, and 

there are well-understood uncertainties associated with these quantities. But there are no market data 

available to measure many, if not most, of the marginal damages or benefits believed to be associated with 

CO2 emissions, so these need to be imputed using economic models.  

For example, an influential component of some SCC calculations is the perceived social cost associated 

with a changed risk of future mortality due to extreme weather. There is no market in which people can 

directly attach a price to that risk. At best economists can try to infer such values by looking at transactions 

in related markets such as real estate or insurance, but isolating the component of price changes attributable 

to atmospheric CO2 levels is very difficult.  

Economists use IAMs to compute the SCC. Two of the best-known are the Climate Framework for 

Uncertainty, Negotiation and Distribution (“FUND”, Tol 1997) and Nordhaus’ DICE. EPA (2023) 

introduced new ones for its recent work. IAMs embed a “damage function” or set of functions relating 

ambient temperature to local economic conditions. The assumptions embedded in the damage function will 

largely determine the resulting SCC. IAMs also assume a long-term discount rate or, as in DICE, compute 

the optimal internal discount rate as part of the solution. 

One approach to developing a damage function is to begin with estimates of the costs (or benefits) of 

warming in specific sectors in countries around the world and aggregate up to a global amount. This was 

the approach used in FUND. An alternative approach is to develop a simple equation that penalizes global 

income according to a simple quadratic function of the average global temperature. This approach was used 

in DICE. In the case of the FUND model many hundreds of parameters had to be selected, whereas in DICE 

only three were needed and were originally chosen to assign a predetermined penalty (1.2%) to global 

output as of 3°C warming, with a quadratic term implying that damages grow with the square of the global 

average temperature anomaly. Barrage and Nordhaus (2024) recently changed the parameters to increase 

the penalty at 3°C to 1.6%, and added a discrete additional 1.0 percent GDP penalty at 3°C warming to 

account for “tipping points” (discrete large-scale environmental changes triggered by crossing a warming 

threshold) and a “judgmental adjustment” of 0.5 percent for excluded impacts at 3°C warming. Not 

surprisingly the newer version of DICE generates much higher SCC estimates than before.  

The concepts of estimation and uncertainty do not readily apply to SCC calculations. No amount of 

data collection can change the fact that many components of the SCC are unknown and rely on judgment 

and opinion based on knowledge of the underlying literature on the physical effects of climate change.  SCC 

calculations are thus best thought of as “if-then” statements: if the following assumptions hold, then the 

SCC is $X per tonne. The list of ‘if’ statements includes the premise that the world’s climate and economy 

work according to the representation in the IAM. One way this might fail to hold is in the timing of warming. 

Every IAM assumes a value of the Equilibrium Climate Sensitivity (ECS), which controls the amount of 

warming that results from CO2 emissions and can be freely varied for the purpose of generating a 

distribution of SCC values associated with uncertainties over ECS. But as Roe and Baumann (2013) pointed 

out, time-to-equilibrium increases with the square of ECS, so an upward adjustment of the ECS parameter 

without an appropriate slowing down of the adjustment process can yield distorted present value damage 

estimates. In particular, the upper tail of warming associated with some commonly-used ECS distributions 

is physically impossible for even a thousand years into the future (Roe and Baumann 2013) yet in an IAM 
would be realized within a couple of centuries. Failure to align ECS with time-to-equilibrium will lead to 

an overestimate of the SCC value. 
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11.2.2 Variations in the SCC 

Every level of the IAM calculation includes assumptions, some more influential than others. Key 

assumptions include the following. 

• The discount rate: Climate damages accrue over a long time horizon and costs a century or two in 

the future need to be discounted to the present. The higher the discount rate the smaller the present 

value of future damages and vice versa. The discount rate represents the opportunity cost of 

spending money today rather than investing it and then having more to spend tomorrow. Some 

economists have argued for the use of very low discount rates in SCC calculations, resulting in 

policy recommendations that favor relatively large immediate investments in CO2 emission 

reductions. The downside is that other investments could potentially earn a larger rate of return for 

society.  

• Equilibrium Climate Sensitivity: IAMs have customarily employed a value of 3.0°C or 3.1°C 

following the IPCC’s guidance. The most recent data-driven ECS values tend to be lower than this 

(see Chapter 4). Dayaratna et al. (2017, 2020, 2023) have shown that use of lower empirically-

derived ECS values dramatically lower the resulting SCC estimate, even when low discount rates 

are used. 

• Damage function coefficients: IAMs assume CO2 and warming cause net harms that increase 

exponentially with temperature. More recently, IAMs have also incorporated effects from assumed 

potential climate tipping points. The FUND model took limited but explicit account of CO2 

fertilization effects in agriculture. Since the coefficients were selected prior the publication of the 

current evidence of global greening and the magnitude of benefits to crops from elevated CO2 (see 

Chapters 2 and 9) the growth effects are likely understated. The DICE model (and others) did not 

explicitly include any CO2 fertilization benefit, except to the extent it was taken into account in the 

literature consulted when picking the damage function coefficients. The damage function in FUND 

contains a region in which low warming yields net benefits in many regions, a finding which is 

supported by econometric models of warming and growth (Berg et al. 2023) and econometric 

simulations of agricultural changes (McKitrick 2025). The DICE damage function, by construction, 

rules out net benefits at any warming level. 

• Emission scenarios: IAMs generate SCC estimates that increase as the pre-existing concentration 

of CO2 increases. Consequently the value of damages later in the century will be higher, depending 

on the assumed baseline emissions over the coming decades.  

Some IAMs (such as DICE) include the cost to the economy of reducing CO2 emissions in order to 

identify the SCC along an optimal growth path. If CO2 emission reductions are assumed to be inexpensive, 

then the model will conclude that the optimal policy should aim for deeper emission cuts and vice versa.  

It is informative to ascertain whether SCC results are invariant to changes in some assumptions. But 

when different assumptions result in higher or lower SCC values, the change in the SCC value does not 

provide prima facie evidence about the validity of the assumptions. For example, in 2023 the U.S. 

Environmental Protection Agency raised its preferred SCC value about 5-fold over the estimates it had 

issued ten years earlier. This is not because new data had been collected or better mathematical methods 

had been invented, but because new assumptions had been used, and the validity of those assumptions was 

a separate question. Tabulations on EPA (2023) p. 81 show that if assumptions similar to earlier analyses 

had been applied, the results would not have materially differed from before. One new assumption was that 

global agricultural damages were far higher than previously believed, based on an analysis in Moore et al. 

(2017). But as discussed in Chapter 9, McKitrick (2025) showed that Moore et al. (2017) had used a 

database in which half the CO2 change observations were missing. When as many of those observations as 

possible were recovered from underlying sources and the analysis was rerun, the projected crop yield losses 

disappeared and turned into gains at all warming levels. Hence the portion of the EPA’s SCC revision 

attributable to agricultural yield losses was unwarranted.  
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11.2.3 Evidence for low SCC 

Chapter 2 reviewed evidence on climate change and greening, and Chapter 9 looked at climate change 

and U.S. agriculture. Evidence shows that CO2 fertilization has a stronger beneficial effect on agriculture 

than was known at the time that IAMs like DICE and FUND were parameterized. Haverd et al. (2020) 

found the observed CO2 fertilization rate has been almost double what had been predicted by crop models. 

Dayaratna et al. (2023) used the updated empirical ECS distribution estimate of Lewis (2022), which 

assimilates modern instrumental and paleoclimatic temperature records, and allowed for a 30 percent gain 

in the CO2 fertilization benefit in the FUND model, and found that, even at a low discount rate of 2.5 

percent, the median SCC as of 2050 is only $18.67, with a 24 percent probability of the true value being 

negative. At a five percent discount rate the median SCC value is negative until the mid-2040s and at 2050 

was only $0.37 with a 49 percent probability of being negative. Thus, under reasonable assumptions a 

mainstream IAM using updated scientific inputs yields evidence consistent with the SCC not being 

significantly greater than zero.  

It should also be noted that the SCC is focused on the social costs of CO2 emissions from fossil fuel 

use. It is not intended to measure the private marginal benefits to consumers and society from the 

availability of fossil fuels. Public willingness to pay for fuels of all types indicates the value to society of 

reliable, abundant fossil energy. Tol (2017) estimates that the private benefit of carbon is large relative to 

the social cost. This can be illustrated by noting that the price of a gallon of gas indicates the marginal value 

to the consumer of the fuel. Suppose we assume a relatively high Social Cost of Carbon of, say, $75 per 

tonne. Deflated by a MCPF4 value of 1.5 that would result in a carbon tax of $50 per tonne, which equates 

to about 44 cents per gallon of gas (Lavelle, 2019). A pre-tax price of $3.00 per gallon would imply the 

marginal social benefit of the fuel is nearly seven times the marginal social cost.  

11.2.4 Tipping points 

SCC calculations typically consider gradual impacts of a warming climate, such as slowly melting 

glaciers and increasing average temperature. A driver of potentially high values of the Social Cost of Carbon 

(SCC) is the introduction into models of discrete catastrophic outcomes associated with abrupt changes 

(Dietz et al., 2021). They are often referred to as “tipping points.” 

The term “tipping point” mingles two different physical concepts that pose different research 

challenges. Many physical systems are inherently stable unless acted upon with sufficient external energy. 

For example, an ice cap might remain intact over a wide range of temperatures but once the temperature 

crosses the 0°C threshold it melts. Such discontinuities are ubiquitous in nature and require an external 

force. Whether the force needs to be large relative to the size of the system depends on the underlying 

stability of the system. 

A different type of tipping point is called a bifurcation and arises from the study of the internal 

dynamics of nonlinear systems (Crawford, 1991). Many systems have been observed to have more than one 

equilibrium point and can move between them with minimal or no external influence. For example, a 

weather system might have two different equilibrium states: one calm and one with a tornado. A transition 

from one to another can happen either with no external force or with a minuscule change, such as a flap of 

the proverbial butterfly’s wings (Shen et al. 2014). The term “tipping point” is sometimes used to mean a 

bifurcation of this type and implies instability inherent in the system itself, which is not necessarily 

dependent on outside forces. It depends, instead, on parameters of the system taking values that support the 

emergence of bifurcations (Crawford, 1991).  

The two different concepts imply different research questions. Regarding the first we are interested in 

whether components of the climate system are susceptible to abrupt discontinuities in response to 

 

4 Marginal Cost of Public Funds: the optimal carbon tax rate is the SCC divided by the MCPF (Sandmo 1977). 
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sufficiently large anthropogenic forcing. Regarding the second we are interested in whether the Earth’s 

climate system has inherent bifurcations that imply the possibility of abrupt transitions with or without 

external forcing.  

Models have been developed that imply the second type is a possibility. Kypke et al. (2020) presented 

a simple climate model in which the GHG concentration is one of the parameters that controls the 

emergence of bifurcations of the Arctic climate to one with both cold and warm equilibria. If sufficiently 

high GHG forcing combined with a sufficiently high rate of ocean heat transport are imposed a bifurcation 

becomes possible. More generally GCMs have been observed to contain bifurcations and multiple equilibria 

(Brunetti and Ragon, 2023).  

The possible existence of bifurcations in the Earth’s climate system implies abrupt transitions are 

possible, not just in response to large forcing but also to small perturbations. This places tipping points into 

the category of low-likelihood and potentially catastrophic events, such as large meteor strikes. A key 

question to ask is whether those kinds of tipping points can be predicted. Current research has not resolved 

that question (Dakos et al., 2024) and indeed might not be able to since one implication of the “butterfly 

effect” is the existence of predictability boundaries of nonlinear systems (Palmer et al., 2014). It is therefore 

not obvious how to incorporate such possibilities into SCC calculations. Small variations in assumptions 

will lead to arbitrarily large variations in the resulting SCC with no grounds for choosing among them. If 

such tipping points are possible the most appropriate stance for economic policy is to maximize resilience 

to any form of external catastrophe since it is unlikely we could predict it or prevent it from happening. 

AR6 (WGI, Chapter 1) focuses mainly on the first type of tipping point, namely an abrupt change in 

response to external forcing. This is also the meaning associated with popular usage of the “tipping point” 

concept in discussions of climate change (see https://report-2023.global-tipping-points.org/what-is-a-

tipping-point/ for example). As summarized by AR6, there is evidence of abrupt change in the paleoclimate 

record, and some of these events have been interpreted as tipping points. Some projections with Earth 

System Models for example have produced tipping points such as Amazon forest dieback in response to 

specified values of CO2 concentration or temperature increases. 

The alarm surrounding climate tipping points is reflected by The Global Tipping Points Report that was 

launched at COP28 on 6 December 2023 (Lenton et al., 2023). It identifies more than 25 parts of the climate 

system said to constitute tipping points. What gets classified as a climate “tipping point” is a moving target. 

The most common examples in the literature and assessment reports include: Greenland ice sheet 

disintegration, West Antarctic ice sheet disintegration, summertime disappearance of Arctic sea ice, 

Amazon rainforest dieback, coral reef dieoff, thawing of permafrost and methane hydrates, Atlantic 

Meridional Overturning Circulation collapse, boreal forest shift, West African monsoon shift, and Indian 

Monsoon shift.   

All such tipping points require a certain amount of system instability to exhibit an abrupt transition in 

response to warming. For this reason, there seems to be very little to discriminate between a tipping event 

and natural climate variability. Natural climate variability has in the past produced shifts in the West African 

and Indian monsoons, Amazon forest and coral reef dieback, and disintegration of parts of the Greenland 

and West Antarctic ice sheets.  These impacts can reverse on the decadal and century timescales associated 

with natural climate variability and ecosystem responses. 

Some abrupt changes are potentially more consequential, including collapse of the West Antarctic ice 

sheet and collapse of the Atlantic Meridional Overturning Circulation (AMOC). AR6 WG1 Summary for 

Policy Makers states: 

 

The Atlantic Meridional Overturning Circulation is very likely to weaken over the 21st century for 
all emission scenarios. While there is high confidence in the 21st century decline, there is only low 

https://report-2023.global-tipping-points.org/what-is-a-tipping-point/
https://report-2023.global-tipping-points.org/what-is-a-tipping-point/
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confidence in the magnitude of the trend. There is medium confidence that there will not be an 

abrupt collapse before 2100. (C.3.4) 

There is limited evidence for low-likelihood, high-impact outcomes (resulting from ice-sheet 

instability processes characterized by deep uncertainty and in some cases involving tipping points) 

that would strongly increase ice loss from the Antarctic Ice Sheet for centuries under high GHG 

emissions scenarios (e.g., SSP5-8.5). (B.5.2) 

 

For SCC calculations, the research question implied by this type of tipping point is whether such events 

have been observed in the past in climate conditions similar to what we currently experience or will in the 

near future. AR6 finds little evidence for impending collapse of the Atlantic Meridional Overturning 

Circulation or the West Antarctic ice sheet. It finds there is no tipping point associated with Arctic Sea ice 

(AR6 Technical Summary p. 76)  

Dietz et al. incorporated several potential tipping points (abrupt changes) into an SCC model and found 

they added about 25 percent to the estimate, mainly associated with thawing permafrost and release of 

methane hydrates. However, the IPCC considers this scenario very unlikely (AR6 Technical Summary p. 

107). 

In summary, there might be unknown bifurcation tipping points that are associated with natural climate 

processes, but this possibility does not translate into specific guidance on the SCC. There are potential 

abrupt change points in the climate system in response to warming, although the IPCC assigns low 

probabilities to most, including the largest ones. When these have been considered, the result is only a 

modest increase in the SCC value in the 21st century. 

11.2.5 Are there alternatives? 

It is increasingly being argued that the SCC is too variable to be useful for policymakers. Cambridge 

Econometrics (Thoung, 2017) stated it’s “time to kill it” due to uncertainties.  The UK and EU no longer 

use SCC for policy appraisal, opting for “target-consistent” carbon pricing (UK Department for Energy 

Security and Net Zero 2022, Dunne 2017). However, the uncertainty of SCC estimates doesn’t mean that 

other regulatory instruments are inherently better or more efficient. Many emissions regulations (such as 

electric vehicle mandates, renewable energy mandates, energy efficiency regulations and bans on certain 

types of home appliances) cost far more per tonne of abatement than any mainstream SCC estimate, which 

is sufficient to establish that they fail a cost-benefit test.  
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12 GLOBAL CLIMATE IMPACTS OF U.S. EMISSIONS POLICIES 

 

Chapter Summary 

U.S. policy actions are expected to have undetectably small direct impacts on the global climate and 

any effects will emerge only with long delays.  

 

12.1 The scale problem 

The emissions rates and atmospheric concentrations of criteria air contaminants are closely connected 

because their lifetimes are short and their concentrations are small; when local emissions are reduced the 

local pollution concentration drops rapidly, usually within a few days. But the global average CO2 

concentration behaves very differently, since emissions mix globally and the global carbon cycle is vast 

and slow. Any change in local CO2 emissions today will have only a very small global effect, and only with 

a long delay.  

Following the emission of a pulse (release) of CO2 into the atmosphere only about 40± 15 percent of 

the extra CO2 will have been sequestered after twenty years.  That fraction rises to 75± 10 percent after a 

thousand years, and the remainder will be gradually removed over the ensuing tens of thousands of years 

(Ciais et al., 2013, pp. 472-473). Consequently, any reduction in U.S. emissions would only modestly slow, 

but not prevent, the rise of global CO2 concentration.  And even if global emissions were to stop tomorrow, 

it would take decades or centuries to see a meaningful reduction in the global CO2 concentration and hence 

human influences on the climate. 

Reducing the atmospheric stock of CO2 would require emissions to fall below the natural sequestration 

rate, assuming the entire increase is anthropogenic. Since that rate has been averaging about 50 percent of 

emissions in recent decades, a reduction of global emissions by 50 percent would (at least temporarily) halt 

the rise in atmospheric CO2. The 1997 Kyoto Protocol proposed to cap industrial nations’ CO2 emissions 

at a modest five percent below 1990 levels by the year 2012. Even though this policy was too difficult for 

most nations to implement, full compliance would not have substantially reduced atmospheric CO2 levels. 

It would only have slightly slowed CO2 growth, reaching the projected year 2100 level in 2105 instead 

(Wigley, 1998). Lomborg (2016) estimated that full compliance with the initial commitments in the Paris 

Accord would not stop warming, it would only prevent about 0.1C warming and delay hitting the baseline 

year 2100 temperature levels by about a decade. 

Thus, in contrast with conventional air pollution control, even drastic local actions will have negligible 

local effects, and only with a long delay. The practice of referring to unilateral U.S. reductions as 

“combatting climate change” or “taking action on climate” on the assumption we can stop climate change 

therefore reflects a profound misunderstanding of the scale of the issue.  

 

12.2 Case study: U.S. motor vehicle emissions 

The scale problem can be illustrated with reference to U.S. motor vehicles. The EPA’s 2009 

Endangerment Finding focused on CO2 emissions from cars and light-duty trucks in the U.S. because 

Section 202(a) of Clean Air Act mandates the EPA to set emissions standards for motor vehicles if 

pollutants are found to endanger public health or welfare. The 2009 Endangerment Finding therefore 

obligated the EPA to regulate emissions from new motor vehicles, ostensibly to reduce or eliminate climate-

related harms to the U.S. public. 
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Two questions that naturally arise are: (1) How large a reduction in CO2 emissions would result from 

such regulation? and (2) What would be the climate impact of such regulation?  

The first question can be addressed by comparing U.S. vehicle-based CO2 emissions to the global total. 

The second question can be addressed by using the fact that the reduction in global warming would be, 

according to the models relied upon by the EPA, proportional to the reduction in global emissions, keeping 

in mind that the change in the CO2 content of the atmosphere in any given year is the result of total global 

CO2 emissions, not just U.S. emissions.  

In 2022, the emissions from U.S. cars and light duty trucks totaled 1.05 billion metric tons of carbon 

dioxide (GtCO2, EPA 2024). Meanwhile global CO2 emissions from energy use totaled 34.6 GtCO2 (Energy 

Institute 2024). Hence U.S. cars and light trucks account for only 3.0 percent of global energy-related CO2 

emissions. To a first approximation we can say that even eliminating all U.S. vehicle-based emissions 

would retard the accumulation of CO2 in the atmosphere by a year or two over a century.  

It would also reduce the overall warming trend by at most about 3 percent. For the period 1979-2023, 

which has the most extensive global coverage of a variety of weather data types, warming trends are 

determined to a precision of about ±15 percent, so the impact of reducing the rate of global warming by 

eliminating U.S. vehicle CO2 emissions would be far below the limits of measurability. Given that global-

average temperature is the most direct climate change metric, impacts on any secondary climate metrics 

(e.g. severe weather, floods, drought, etc.) from reducing U.S. vehicle CO2 emissions would be even less 

measurable.  

Consequently, in contrast to the case of local air contaminants like particulates and ozone, even the 

most aggressive regulatory actions on GHG emissions from U.S. vehicles cannot be expected to remediate 

alleged climate dangers to the U.S. public on any measurable scale.  

 

12.3 Concluding thoughts 

This report supports a more nuanced and evidence-based approach for informing climate policy that 

explicitly acknowledges uncertainties. The risks and benefits of a climate changing under both natural and 

human influences must be weighed against the costs, efficacy, and collateral impacts of any “climate 

action”, considering the nation’s need for reliable and affordable energy with minimal local pollution. 

Beyond continuing precise, un-interrupted observations of the global climate system, it will be important 

to make realistic assumptions about future emissions, re-evaluate climate models to address biases and 

uncertainties, and clearly acknowledge the limitations of extreme event attribution studies. An approach 

that acknowledges both the potential risks and benefits of CO2, rather than relying on flawed models and 

extreme scenarios, is essential for informed and effective decision-making. 
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GLOSSARY 

 

2XCO2: Doubling of the atmospheric carbon dioxide (CO2), a commonly used baseline for addressing 

climate change. In 2025, atmospheric CO2 concentrations were approximately 50 percent of the way to 

2XCO2 compared to 1800. 

ABATEMENT: In the context of environmental policy, the reduction of emissions. 

ACE (Accumulated Cyclone Energy): A statistical measure of a tropical cyclone’s energy accumulated 

over its lifetime, calculated from a summation of the square of maximum sustained wind speeds. 

ACIDIFICATION: A commonly used term for the reduction in ocean pH from more alkaline to less 

alkaline values. 

ACRIM (Active Cavity Radiometer Irradiance Monitor) GAP: the gap in total solar irradiance data 

between 1989 and 1991 caused by a delay in the launch of a satellite-borne monitor in time to overlap and 

intercalibrate with the prior system. 

AEROSOLS: Tiny solid or liquid particles suspended in the air. 

ALKALINE: Having a chemical pH greater than 7.0. The “opposite” of acidic, which means a pH less 

than 7.0. 

AMBIENT: Relating to the immediate surroundings of something. 

AMO: Atlantic Multidecadal Oscillation, a 60-year cycle of sea surface temperatures in the North 

Atlantic. 

ANTHROPOGENIC: Created by humans. 

AR (Assessment Reports): Periodic assessments published by the Intergovernmental Panel on Climate 

Change evaluating current knowledge of the climate system, global change, and associated issues. An AR 

now consists of reports from three working groups, the first (WG1) concerned with physical science and 

the others concerned with societal impacts and mitigation strategies. The most recent was AR6. 

ATTRIBUTION: Assertion of a causal relation, chiefly from anthropogenic GHG emissions to observed 

climate patterns. 

AUTOCORRELATION: The phenomenon in which the current value of a random time series variable is 

correlated with its value in a previous time period. 

BIOMASS: The total quantity or weight of organic matter in a given area or volume. 

CARBON: The 6th element in the periodic table. Popularly used as a shorthand term for carbon dioxide. 

CMIP (Coupled Model Intercomparison Project): The Intergovernmental Panel on Climate Change’s 

organized effort to compare many different global ocean-atmosphere climate models when they are all 

forced with the same emissions scenario(s). The two most recent were the CMIP5 and CMIP6 for, 

respectively, AR5 and AR6. 

CLIMATE CHANGE: A change in climate due to human influences, as opposed to climate variability, 

which is natural in origin. 

CONUS: The contiguous 48 U.S. states. 

DICE (Dynamic Integrated model of the Climate and Economy): An Integrated Assessment Model 

developed by William Nordhaus in 1993. 
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DISCOUNT RATE: The interest rate used to convert future costs and benefits into their present value. 

Varies inversely with present value so a high discount rate reduces the present value of future costs and 

benefits. 

DRY ICE: Frozen carbon dioxide. 

ECONOMETRICS: The branch of economics concerned with the use of statistical methods (chiefly 

multiple regression) to analyse economic systems. 

ECS (Equilibrium Climate Sensitivity): The total amount of eventual global-average surface warming in 

response to a hypothetical doubling of the atmospheric CO2 concentration compared to pre-Industrial 

levels. 

EL NIÑO: The warm phase of the El Niño – Southern Oscillation, involving weaker upwelling of cold 

water off the South American coast and weaker Pacific trade winds. 

EMISSIONS SCENARIO: An assumed scenario of future greenhouse gas emissions (or resulting 

atmospheric concentrations) based upon assumptions regarding global economic activity, the prevalence 

of fossil fuel use, and (sometimes) global carbon cycle model estimates of the rate of CO2 uptake by land 

and ocean. 

ENDANGERMENT FINDING (EF): The 2009 finding by the Administrator of the Environmental 

Protection Agency that emissions of well-mixed greenhouse gases (primarily CO2) endanger human 

health and welfare. 

ENSO: El Niño – Southern Oscillation, a prominent natural climate fluctuation involving year-to-year 

variations in the upwelling of cold water off the equatorial coast of South America and associated 

strengthening or weakening of trade winds across the Pacific Ocean. 

FACE: (Free-Air CO2 Enrichment) Large-scale open-air studies that expose plants to elevated CO2 

levels, simulating future climate scenarios. 

FOSSIL FUEL: A natural hydrocarbon fuel such as coal, oil, or natural gas formed in the geological past 

from the remains of living organisms. 

FUND (Framework for Uncertainty, Negotiation, and Distribution): An Integrated Assessment Model 

developed by Richard Tol in 1997. 

GBR (Great Barrier Reef): The world’s largest coral reef ecosystem located off the northeast coast of 

Australia. 

GDP (Gross Domestic Product): Total market value of all the final goods and services produced within a 

country’s border, usually over one year. 

GHCN (Global Historical Climatology Network): A time-varying number of globally distributed weather 

stations making hourly, daily, or monthly measurements of precipitation, temperature and sometimes 

snowfall and snow depth. 

GLOBAL GREENING: The satellite-observed increase in greenness in most vegetated land areas 

observed since the early 1980s. 

GNP (Gross National Product): Total market value of all the final goods and services produced by the 

citizens of a country, including exports and imports, usually over one year. 

GDP (Gross National Product): Total market value of all the domestically-produced final goods and 

services produced by the citizens of a country, usually over one year. 

GREENHOUSE EFFECT (GHE): The tendency for any planetary atmosphere containing greenhouse 

gases to be warmer in the lowest layers than if those gases did not exist. 
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GREENHOUSE GAS (GHG): An atmospheric gas that absorbs and emits infrared radiation, especially 

water vapor, CO2, and methane. 

GROSS PRIMARY PRODUCTION: The total chemical energy used by plants during photosynthesis 

over a specified period of time. Net Primary Production is the residual after using the energy required for 

respiration and represents the contribution to biomass growth.  

HURST PHENOMENON: See long term persistence. 

HYDROLOGY: The study of the movement of water, especially on land and in the atmosphere. 

IAM (Integrated Assessment Model): A computerized tool that combines economics, climate science, and 

social sciences to provide quantitative relationships between human and Earth systems, helping to inform 

policy decisions. 

IEA (International Energy Agency): A Paris-based intergovernmental organization, established in 1974, 

that provides policy recommendations, analysis and data on the global energy sector. 

IPCC (Intergovernmental Panel on Climate Change): A panel of international experts and governmental 

representatives established by the United Nations and World Meteorological Organization in 1988 to 

provide governments at all levels with scientific information that they can use to develop climate policies. 

IR (Infrared): Heat radiation that all solid objects and greenhouse gases emit by virtue of their 

temperature. 

LA NIÑA: The cool phase of ENSO, involving stronger upwelling of cold water off the South American 

coast and stronger Pacific trade winds. 

MAIZE: Corn. 

MODEL: A computer code or collection of codes which quantify our knowledge of various processes and 

the interactions between those processes. 

MORTALITY: Death or number of deaths, usually expressed for a specific population and period. 

NCA (National Climate Assessment): A periodic report mandated by the Global Change Research Act of 

1990 summarizing the impact of climate change on the United States. There have been five NCA reports: 

NCA1 (2000), NCA2 (2009), NCA3 (2014), NCA4 (2017-18), and NCA5 (2023). 

OECD (Organization for Economic Cooperation and Development): A group of 38 member countries that 

have a democratic system of government and free economic systems. 

PALEOCLIMATE: Climate of the distant past, before modern weather instruments were widely used 

(typically pre-1850), necessitating the use of “proxy” measurements such as tree rings, ice core, pollen 

records, etc. 

PDI (Power Dissipation Index): A statistical estimate of the accumulated destructive potential of a 

tropical cyclone over time, calculated as a summation of the cube of the maximum sustained wind speeds. 

PDO: Pacific Decadal Oscillation, a recurring ocean-atmosphere interaction centered over the Pacific 

basin associated with predominantly warm or cool patterns that influence the global climate.  

PHOTOSYNTHESIS: The process by which plants grow, requiring carbon dioxide, water, and light at 

sufficiently warm temperatures (10 to 35 deg. C for optimal function). 

PPM: Parts per million, a measure of the concentration of a substance in (for example) the atmosphere 

PRE-INDUSTRIAL: The near-term historical period before which human greenhouse gas emissions were 

considered significant, usually assumed to be the mid-1700s. 
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RADIATIVE FEEDBACK: A change in the balance between absorbed solar radiation and emitted 

infrared (IR) radiation, referenced to the top of the atmosphere, caused by changes in surface temperature. 

RADIATIVE FORCING: The change in the balance between absorbed solar radiation and emitted 

infrared (IR) radiation, referenced to the top of the atmosphere, caused by changes in greenhouse gases, 

anthropogenic aerosols, volcanoes, etc. 

RCP (Representative Concentration Pathway) SCENARIOS: Different scenarios for future greenhouse 

gas emissions and their impact on the atmosphere, introduced in the IPCC’s Fifth Assessment Report 

(AR5). RCP scenarios have a number label (e.g. RCP6.0) indicating how much radiative forcing they 

assume in 2100 relative to pre-Industrial times, in Watts per square meter. RCP4.5 and RCP6.0 are 

intermediate scenarios, whereas RCP8.5 is an extreme scenario with very large future emissions of 

greenhouse gases. 

REGRESSION: A statistical method for selecting the coefficients of a linear equation to explain the 

behaviour of a dependent variable in terms of variations in one or more explanatory variables. 

RICARDIAN ANALYSIS: A method used in environmental economics named after David Ricardo to 

estimate the economic impacts of climate change, particularly on agriculture, by making use of the 

hypothesis that expected changes in the return to future agricultural activity will be capitalized into 

current land values. 

SCC (Social Cost of Carbon): An estimate of the net economic damages, measured in present-value 

dollars, caused by emitting one additional ton of CO2 into the atmosphere. 

SSP (Shared Socioeconomic Pathway) SCENARIOS: Different scenarios for future greenhouse gas 

emissions and their impact on the atmosphere, introduced in the IPCC’s Sixth Assessment Report (AR6). 

Some of the SSP scenarios are analogous to the older RCP scenarios, for purposes of continuity and 

comparison to earlier climate model assessments. 

TC: Tropical cyclone. 

TMAX: The daily maximum surface air temperature. 

TMIN: The daily minimum surface air temperature. 

TOA: Top of atmosphere. 

TONNE: Metric ton. 

TOXICOLOGY: The study of the adverse effects of chemical substances on living organisms. 

TREND: A coefficient, usually estimated using linear regression, representing the slope of a line of best 

fit through a time series of data, indicating any tendency for the series mean to move up or down over 

time. 

TSI (Total Solar Irradiance): The measure of the total amount of incident solar radiation per unit area, 

including all wavelengths of electromagnetic radiation, that reaches the Earth’s atmosphere. Typically 

shown in units of watts per square meter (W/m2). 

UHI (Urban Heat Island): The tendency for inhabited areas to be warmer than their rural surroundings, 

due to the replacement of natural land and vegetation with roads, parking lots, buildings, and waste heat 

sources. 

USHCN: The U.S. Historical Climatology Network, consisting of quality-controlled temperature and 

precipitation data from 1,218 surface weather stations. 
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Figure 3.2.2  Author created figure.  Data source: Freidlingstein et al. (2024) 

https://essd.copernicus.org/preprints/essd-2024-519  
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Figure 5.1 Data source: https:climexp.knmi.nl/start.cgi. Author-created figure. One ensemble member per 
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https://climate.rutgers.edu/snowcover/chart_seasonal.php?ui_set=nhland&ui_season=1 (accessed May 

27, 2025) 

 

Figure 5.8  Screen shot from Rugenstein and Hakuba (2023) Figure 1 

https://doi.org/10.1029/2022GL101802 

 

Figure 5.9  Author created figure. Data source: https://climexp.knmi.nl/start.cgi. OLS linear trends. One 

SSP370 ensemble member per model, averaged surface air temperatures for June through August over 

31N to 49N latitude, 84W to 102W longitude. Observed temperature data for same months from 

NOAA/NCEI at https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/statewide/time-series 

for the 12 Corn Belt states averaged together. 

 

Figure 6.1.1  Author replot of Figure 10 from Koutsoyiannis (2013) 

http://dx.doi.org/10.1080/02626667.2013.804626 

 

Figure 6.2.1  Screen shot of figure from Maue (2025) https://climatlas.com/tropical/ 

 

Figure 6.2.2  Author created figure.  Data from National Hurricane Center (2024)  

https://www.nhc.noaa.gov/climo/  

 

Figure 6.2.3  Author created figure.  Data from NOAA HRD  

https://www.aoml.noaa.gov/hrd/hurdat/All_U.S._Hurricanes.html 

 

Table 6.2.1  Author created table.  Data from NOAA HRD  

https://www.aoml.noaa.gov/hrd/hurdat/most_intense.html 

 

Figure 6.3.1  Screen shot from NCA4 Figure 6.4 

 

Figure 6.3.2 Author created figure. Data source: https://www.nsstc.uah.edu/data/ushcn_jrc/  

 

Figure 6.3.3  Author created figure. Data source: https://www.nsstc.uah.edu/data/ushcn_jrc/ 

 

Figure 6.3.4  Author created figure. Data source: https://www.nsstc.uah.edu/data/ushcn_jrc/ 

 

Figure 6.3.5  Author created figure Data source: https://www.nsstc.uah.edu/data/ushcn_jrc/ 

 

Figure 6.3.6  Author created figure. Data source: https://www.nsstc.uah.edu/data/ushcn_jrc/ 

 

Figure 6.3.7  Screen shot from https://www.globalchange.gov/indicators/heat-waves 

 

Box tables.  Author created table. Data from McKitrick and Christy (2025) 
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Figure 6.4.1  Author created figure. Data from McKitrick and Christy (2025) 

 

Figure 6.4.2  Author created figure. Data from McKitrick and Christy (2025) 

 

Figure 6.4.3  Author created figure. Data from McKitrick and Christy (2025) 

 

Figure 6.4.4  Author created figure. Data from McKitrick and Christy (2025) 

 

Figure 6.4.5  Author created figure. Data from McKitrick and Christy (2025) 

 

Figure 6.5.1  Author created figure.  Data source: https://www.spc.noaa.gov/wcm/data/1950-

2024_actual_tornadoes.csv 

 

Figure 6.7.1  Author created figure.  Data source: https://www.ncei.noaa.gov/access/monitoring/uspa/wet-

dry/0 accessed June 16, 2025. OLS trend line added. 

 

Figure 6.8.1  Screen shot from Lizundia-Loiola et al. (2021) Figure 12.  

 

Figure 6.8.2  Screenshot from Marlon et al. (2012) Figure 2 panel C.  

https://www.pnas.org/doi/pdf/10.1073/pnas.1112839109  

 

Figure 6.8.3 Author created Figure. Data 1926 to 2016: 

https://web.archive.org/web/20200212033452/https://www.nifc.gov/fireInfo/fireInfo_stats_totalFires.html

. Post-2017 https://www.nifc.gov/fire-information/statistics/wildfires Accessed June 16, 2025. 

 

Figure 7.1  Screenshot from https://tidesandcurrents.noaa.gov/sltrends/ 

 

Table 7.1  Author created table.  From Section 6.2 of 

https://judithcurry.com/wp-content/uploads/2018/11/special-report-sea-level-rise-3.pdf  

 

Figure 7.2  Screenshot from https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?id=9414290  

(downloaded 4/22/25) 

 

Figure 7.3  Screenshot from 

https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?id=8771450  (downloaded 4/22/2025) 

 

Figure 7.4  Screenshot from 

https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?id=8761724  (downloaded 4/22/25) 

 

Figure 7.5  Screenshot from 

https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?id=8518750   (downloaded 4/22/25) 

 

Figure 7.6 Author created figure.  Data from 

https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?id=8518750  

 

Figure 8.1  Screenshot from 

https://crudata.uea.ac.uk/cru/data/temperature/HadCRUT5.0Analysis.pdf 

 

Figure 8.2 Screenshot from Hansen and Karecha (2025)  Figure 1 

https://www.columbia.edu/~jeh1/mailings/2025/CloudFeedback.13May2025.pdf  
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Table 8.1  Screenshot of column 1 of Table 12.12 IPCC AR6 Working Group I report 

 

Figure 9.1  Screenshot From Taylor and Schlenker (2021) Figure 1   

https://www.nber.org/papers/w29320 

 

Figure 9.2  Screenshot from McKitrick (2025) Figure 1  

https://www.nature.com/articles/s41598-025-90254-2 

 

Figure 10.1  Screenshot from Pielke (2024) https://www.nature.com/articles/s44304-024-00011-0 Figure 

3.   

 

Figure 10.2  Screenshot from Gasparini et al. (2015) Figure 2 

http://dx.doi.org/10.1016/S0140-6736(14)62114-0 

 

Figure 11.1 Screen shot from Pielke Jr (2023)   

https://rogerpielkejr.substack.com/p/global-disaster-losses1990-2023 

 

Figure 11.2 Screenshot from CEA-OMB (2023) https://bidenwhitehouse.archives.gov/wp-

content/uploads/2023/03/CEA-OMB-White-Paper.pdf Figure 1.  
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